Random Aperture and Pattern Refractive Microlens Array

Coligh Optics Technology Co.,ltd

Specifications

Material: Not Specified
Grid Shape: Custom
Effective Focal Length (EFL): 0.02 mm
Lens Pitch: 0.01 mm
Array Width: 10 mm
Array Height: 10 mm
Array Thickness: 1 mm
Document icon Download Data Sheet Download icon

Features

Random Aperture Micro Lens Arrays Key Features



  • In the random micro-array lens, the shape of each sub-lens is random, no longer a fixed geometric figure, and no longer any symmetrical or regular form. This irregular shape can be more flexible in beam shaping and light field modulation. And it can adapt to a variety of optical applications, and can be realized as fine-tuning dispersion, scattering and focusing of the light beam.

  • In the random micro-array lens, the position of each lens in the lens array is randomly divided, and the spacing and arrangement order between the lenses are not fixed. In this way, the light field can be more uniform, the optical system adjustment can be more delicate, and the optical distortion can be reduced by precisely controlling the density and distribution of the random arrangement.
    The type of lens is plano-convex refractive type. This design enables it to achieve more effective refraction of the light beam and achieve lower optical loss. The larger numerical aperture of the plano-convex lens can capture more light.

  • The combination of random arrangement and random shape can realize beam shaping and focusing mode conversion in irregular space, and can control and optimize the light beam, eliminating the interference caused by regular arrays in traditional optical systems.

Applications

Why are randomly arranged microarray lenses with random apertures needed?



  • Random microarray lenses can reduce the periodic interference and moiré patterns associated with traditional regularly arranged lenses, resulting in a more uniform light field distribution.

  • Random microarray lenses offer more precise and flexible light field control, enabling more uniform illumination distribution.

  •  Random microarray lenses can reduce the concentration effect in regular arrays, resulting in a more uniform light field distribution, while also minimizing energy loss caused by uneven light beams.

  • Random microarray lenses can be used in complex optical imaging systems such as super-resolution microscopy and lidar to regulate the uniformity of the light source.