

219 Westbrook Road Ottawa, ON, Canada, K0A 1L0

Toll free: 1-800-361-5415 Telephone: 1-613-831-0981 Fax: 1-613-836-5089 sales@ozoptics.com

POLARIZATION ENTANGLEMENT TOMOGRAPHY ANALYZER

PRELIMINARY

Features:

- Plug-and-play analyzer with a controller unit
- Customized software and intuitive GUI
- Quick and precise polarization state rotators
- · Compact size and small footprint

Applications:

- · Polarization state tomography
- · Automation of multi-polarization state analysis

Product Description:

This cost-effective analyzer reduces the complexity level, effort, and cost to perform one of the most precise polarization entanglement analysis using two detectors [1]. The analyzer as shown in Figure 1 is provided along with a control unit with a USB port and power supply. The intuitive graphical user interface (GUI) is pre-programed to perform a set of 36 measurements (shown in Figure 2) in the canonical basis {H, V, D, A, R, L} \otimes {H, V, D, A, R, L} for generating precise tomography through two single-photon detectors.

This polarization system rotates the polarization states of the photon pairs with a sub-degree precision, which is achieved through built-in encoders enabling closed loop operation. The coincidences rate, which is the core of reconstructing a photon pair polarization state, is thus realized at high precision with excellent repeatability in the course of a quick experiment.

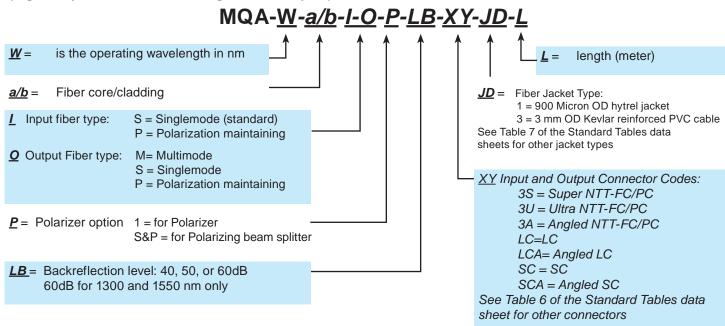
In addition, heralding efficiency of a given polarization entangled-photon source can be maintained thanks to high coupling efficiency between the input and output fibers delivering the photon pairs from the source to the detectors with a negligible optical loss.

FIG. 1. Quantum Polarization State Analyzer illustrating the two rails of motorized rotation stages and the control unit. In each rail, a rotatable quarter waveplate, half waveplate and fixed polarizer combination allows projection into any single-qubit basis. The two-qubit measurements are then recorded from the two rails feeding two single-photon detectors, connected to a time tagging unit.

This device consists of two rotation stages as shown in Figure 1. Each stage contains a rotatable quarter-wave plate (QWP), rotatable half-wave plate (HWP) and fixed polarizer, which can be replaced with a polarizing beam splitter (PBS) if required. The input and output ports are coupled to fiber pigtails. Systems with connector receptacles or collimators for free-space detection can also be provided.

Specifications

Parameters						
Optical Insertion loss	<0.75 dB*					
Optical Wavelength (nm)	1550, 810 or upon request					
Repeatability	0.1°					
DC Voltage Input	5 V					
Communication	TTL RS232 via USB port					
Environmental Operating Conditions						
Temperature Range	15 to 40 °C					
Maximum Relative Humidity	<80% at 31 °C (Non- Condensing)					


* Measured at 1550 nm at room temprature

OZOptics			Polarization Maintaining Dept.			Precisio	on Rotation	- 0	
Contr	ol Settin	and the second second				C	H1 CH2	CH3	CH4
Curre Positi		CH2 22.5°	CH3 0.01°	CH4 0.01°		uick 0	0	0	0
НН	Alice QWP	Alice HWP	Bob QWP	Bob HWP 0	AH	Alice QW	P Alice HWP 67.5	Bob QWP	Bob HW
нν	0	0	0	45	AV	-45	67.5	0	45
HD	0	0	45	22.5	AD	-45	67.5	45	22.5
HA	0	0	-45	67.5	AA	-45	67.5	-45	67.5
HR	0	0	45	0	AR	-45	67.5	45	0
HL	0	0	-45	0	AL	-45	67.5	-45	0
VH	0	<mark>4</mark> 5	0	0	RH	45	0	0	0
VV	0	45	0	45	RV	45	0	0	45
VD	0	45	45	22.5	RD	45	0	45	22.5
VA	0	45	-45	67.5	RA	45	0	-45	67.5
VR	0	45	45	0	RR	45	0	45	0
VL	0	45	-45	0	RL	45	0	-45	0
DH	45	22.5	0	0	LH	-45	0	0	0
DV	45	22.5	0	45	LV	-45	0	0	45
DD	45	22.5	45	22.5	LD	-45	0	45	22.5
DA	45	22.5	-45	67.5	LA	-45	0	-45	67.5
DR	45	22.5	45	0	LR	-45	0	45	0
DL	45	22.5	-45	0	LL	-45	0	-45	0

FIG. 2. The GUI of the software showing the set of the 36 measurements, where each measurement is executed by clicking the corresponding button.

Ordering Information:

(Pigtail Style, Polarization Entanglement Analyzer)

References:

[1] J. B. Altepeter, E. R. Jeffrey, P. G. Kwiat, S. Tanzilli, N. Gisin, and A. Acín "Experimental Methods for Detecting Entanglement" Phys. Rev. Lett. 95, 033601,15 July 2005.