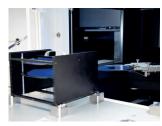
microDICETM

Enabling TLS-Dicing™ System for Separation of SiC Wafers

3D-Micromac's high-performance microDICE™ laser dicing system separates wafers into dies using TLS-Dicing™ technology (Thermal-Laser-Separation). microDICE™ significantly reduces the dicing cost per wafer compared to traditional separation technologies. At the same time, cleaving with microDICE™ provides outstanding edge quality while increasing yield and process throughput. This is particularly true for silicon carbide (SiC) substrates, which are hard and brittle.

microDICE™ offers:

- Significant higher throughput due to dicing speed up to 300 mm/s
- Minimal cost of ownership
- The ability to produce more dies per wafer by reducing street width



$microDICE^{\text{\tiny{TM}}} - System\ Configuration$

The microDICETM standard system configuration consists of:

- Cleaving function
- Soft scribe function
- Micro stretching function

Available options:

- · Automated wafer handling
- Second unit for scribing
- SECS/GEM interface
- Filter fan unit
- Drying unit

Wafer size	 Up to 300 mm (12") wafer size
Laser sources	 Two integrated long lifetime, low maintenance fiber laser sources One fiber laser source for cleaving process One fiber laser source for soft scribing process
Positioning system	 Direct driven XY-gantry system Rotation axis with vacuum chuck Z positioning system for laser optics and cameras Position accuracy X axis: ± 0.0018 mm, repeatability: ± 0.00075 mm Position accuracy Y axis: ± 0.001 mm, repeatability: ± 0.0004 mm
Wafer chuck	Vacuum chuck up to 300 mm wafer size (tape and frame)Integrated patented micro stretching function for edge protection
Software microMMI	Control of all components and parametersDifferent user levels supported (administrator, supervisor, operator)
Standards	Compatible with common SEMI standardsLaser safety class 1Clean room class 6
Consumables	Cooling water, compressed air, electrical powerOnly 600 ml DI-water for 1 h active dicing time
Machine dimensions	 2005 x 2000 x 2090 mm³ (W x H x D) incl. automatic handling

Changes in accordance to technical progress are reserved.