

electron micr oscopy

lasers

ionizing radia tion detection phosphors fo r light conver sion

x-ray imagin g

coating

sapphire prof iles precision opti cs

materials

products

Lear aser rods - Ytterbium doped

about us

c

Crytur delivers high quality laser rods based on pr

• oprietary crystals and in-house processing and coating

⊘ YB:YAG

OYB:LUAG

The Yb³⁺ ion exhibits a small quantum defect and a quasi-three level system with a long upper laser level lifetime, which is important for energy accumulation in Q-switched la sers.

The wide luminescence band of Yb^{3+} is advantageous for the generation of sub-picosecond pulses. Long energy storage lifetime, broad absorption band at 940 nm and very low quantum defect make Yb:YAG crystal superior candidate for diode-pumped high-energy lasers.

Absorbtion spectrum of Yb:YAG

MATERIAL CHARACTERISTICS	
Crystal structure	cubic - la3d
Emission wavelength	1030 nm
Pump bands	941 nm, 969 nm
Refractive index at 632 nm	1.83
Absorption cross section at 940 nm	8.2 x 10 ⁻²¹ cm ²

Emission cross section at 2013 nm	$2.1 \times 10^{-20} \text{cm}^2$
DESIGN	
Rod or disc diameters	2 – 80 mm
Rod length or disc thickness	0.1 - 100 mm
Doping concentration	1 – 10 at.%
Polishing	Barrel surface fine ground or polished. Perpendicular or wedged ends. Polishing according to DIN and MIL standards.
Coatings	HfO ₂ based high reflectors, output couplers or antireflective coating

Application example: Q-Switched Yb:YAG-Cr:YAG microchip laser

The Yb:YAG/Cr:YAG microchip laser threshold pumping power was found to be 3.3 W. With the increasing pumping power the mean output power, and generated pulse repetition rate also increased up to 1 W and 13.6 kHz, respectively, for the pumping power 9.3 W. The maxim output power was reached without observable thermal roll-over.

The laser slope efficiency in respect to incident pumping po wer was ≈ 17 %. The average pulse width was 1.58 ± 0.04 n s. The maximum pulse energy and peak power value were 7 $3.8\pm0.7~\mu J$, and $46.0\pm0.8kW$, respectively.

Webdesign by