TO38 405nm 320mw Nichia NDV4542 Blue Violet Laser Diode

Feature

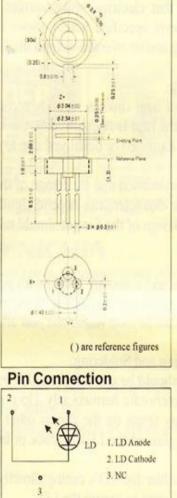
- Optical Output Power: Pulse 320mW
- Can Type : φ Floating Mounted
- Peak Wavelength: 405nm Absolute Maximum Ratings
- Optical Output Power: 250 mW(CW), 400mW(Pulse)
- LD Reverse Voltage: 2V
- Storage Temperature: -40 ~ 85 °C
- Operating Case Temperate: -10 ~ 80 °C Pulse Condition: Pulse Width 30ns,Duty 50%

Safety of Laser light

- Laser Light can damege the human eyes and skin. Do not expose the eye
 or skin to any laser light directly and/or through optical lens. When
 handling the LDs, wear appropriate safety glasses to prevent laser light,
 even any reflections from entering to the eye. Focused laser beam
 through optical instruments will increase the chance of eye hazard.
- These LDs are classified in Class 4 of IEC60825-1 and 21 CFR Part 1040.10 Safety Standards. It is absolutely necessary to take overall safety measures against User's modules, equipment and systems into which Nichia LDs are incorporated and/or integrated.

Features

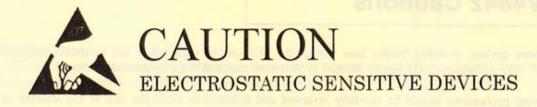
- · Optical Output Power: Pulse320mW
- · Can Type: \$\$\phi 3.8 Floating Mounted
- · Peak Wavelength: 405nm


bsolute Maximum Ratings				
Item		Symbol	Absolute Maximum Ratings	Unit
Optical Output Power	CW	Poc	200	mW
	Pulse	Pop	400 *	mW
LD Reverse Voltage		Vr (LD)	2	V
Storage Temperature		Tstg	-40 ~ 85	°C
Operating Case Temperature		Tc	-10 ~ 80	°C

* Pulse Condition: Pulse Width 30ns, Duty 50%

Item	1	Condition	Symbol	Min	Тур.	Max	Unit
Optical Output Power Peak Wavelength*		CW	Po	-	- 405 35	100 410 50	mW nm mA
		Po=100mW	λp Ith	400			
Threshold Current	CW						
Operating	Current	Po=100mW	lop	-	100	130	mA
Slope Efficiency Operating Voltage	ciency	CW	η	1.1	1.4	1.9	W/A
	Po=100mW	Vop		4.6	5.5	V	
FWHM Beam Divergence*		Po=100mW	θ//	7.0	9,0	12.0	deg.
			θ⊥	15.0	19.5	23.0	deg.
Emission		Po=100mW	Δθ//	-2.0		2.0	deg.
Point Accuracy	Angle		Δθ⊥	-2.5		2.5	deg.

Outline Dimension


This model does not have Photo Diode.

* Measuring specifications

All figures in this specification are measured by Nichia's method and may contain measurement deviations.

The above specifications are for reference purpose only and subjected to change without prior notice.

NICHIA CORPORATION

- Our laser diode is very sensitive to ESD (electronic static discharge). Take Care of handling it.
- Handle our laser diode where taking measure to avoid ESD.
- Take all possible measures as listed below to avoid as much ESD as possible.

Check lists to handle laser diode

1. Equipment

	Use a grounded conductive floor mai and grounded tablemat.			
	Grounded the workbench and floor.			
-	Take measures against ESD with chairs.			
	Transport and store laser diodes in cases that provided protection against static electricity.			
	Do not put things that generate static charges.			
	Grounded the shelf or rack, which stores laser diodes.			
	Use tools to increase electrical neutralization, such as ion blowers.			
	Keep working environment at a high humidity (preferable greater than 50%)			

2. Users and Operators

Do not wear things, which easily generate ESD. (Ex. Wears made by plastic goods and synthetic fiber.)
Put on work clothes gloves, shoes to protect against static electricity.
Put on conductive strap (wrist strap) grounded via a high resistance ($1M\Omega$).
Contact conductive strap with your base skin.
Do not handle or operate laser diode roughly.

This checklist is reference to avoid ESD and can not be prevented ESD perfectly.