

Silicon PIN Photodiode

FMD5000

Description

TFMD5000 is a new device has a super low profile and an overall dimension of $5 \times 4 \times 1.1$ mm. It can accept a PIN photodiode chip with an active area up to 10 mm square. In order to meet the strict requirements for different sensing applications, this device comes in 3 different versions: standard clear encapsulation lens for responsivity from visible to 1000nm; a red encapsulant lens for applications that are required to filter out visible ambient light interference; and a black encapsulant lens for application where higher responsivity in the infrared region is required.

This device provides enhanced performance and optimum packaging for various applications.

Versions

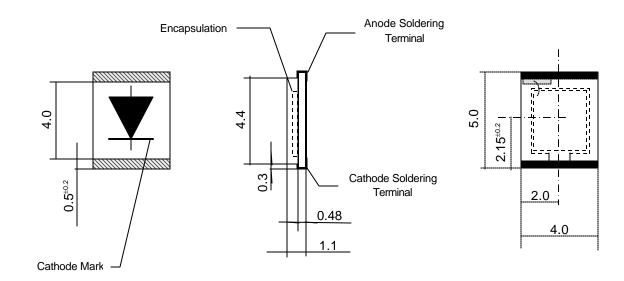
Parameter	Encapsulation		
TFMD5000	Clear		
TFMD5000R	Red		
TFMD5000B	Black		

Features

- Large radiant sensitive area (8.1 mm²)
- Wide angle of half sensitivity $\varphi = \pm 65^{\circ}$
- High photo sensitivity
- Fast response times
- Small junction capacitance

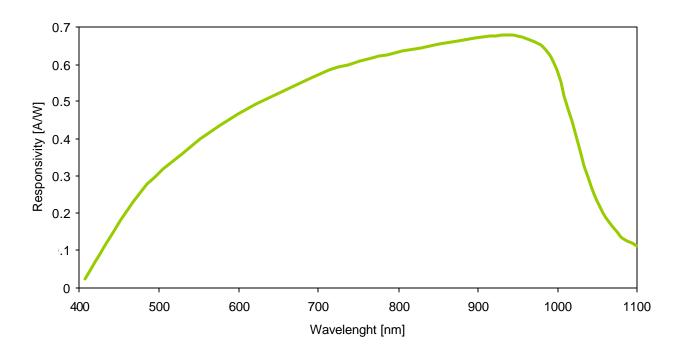
Application

- Sensor
- Encoders
- Medical
- Fiber Optics
- Automotive

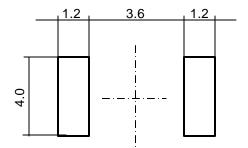

Absolute Maximum Ratings

Parameter	Symbol	Condition	Value	Unit
Reverse Voltage	V _R		60	V
Power Dissipation	Pv	$T_{amb} \le 25^{\circ}C$	215	mW
Junction Temperature	Tj		100	°C
Storage Temperature Range	T _{stg}		-55 +100	°C
Soldering Temperature	T_{sd}	t≤3s	260	°C
Thermal Resistance Junction/Ambient	R _{thJA}		350	K/W

TFMD5000


✤ Basic Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Breakdown Voltage	V(BR)	I _R = 100 μA, E = 0	60	-		V
Reverse Dark Current	I _{ro}	V _R = 10 V, E = 0		5	30	nA
Diode Capacitance	CD	V _R = 3 V, f = 1 MHz, E = 0		25		pF
Open Circuit Voltage	Vo	$E_e = 1 \text{mW/cm}^2$, $\lambda = 950 \text{ nm}$		350		mV
Temp. Coefficient of Vo	TK _{Vo}	$E_e = 1$ mW/cm ² , $\lambda = 950$ nm		-2.6		mV/K
Short Circuit Current	I _{SC}	C _T = 2870°K, H=5mW/cm ²		80		μΑ
Temp. Coefficient of I_k	TKIk	$E_{e} = 1 \text{mW/cm}^{2}, \lambda = 950 \text{ nm}$		0.1		%/K
Reverse Light Current	I _{ra}	$E_e = 5mW/cm^2$, $V_R = 5 V$, $C_T = 2870^{\circ}K$		80		μA
Angle of Half Sensitiv0ity	φ			±65		deg
Wavelength of Peak Sensitivity	λ _p			900		nm
Range of Spectral Bandwidth	$\lambda_{0.5}$			400 ÷ 1050		nm
Noise Equivalent Power	NEP	$V_R = 10 \text{ V}, \ \lambda = 950 \text{ nm}$		4x10 ⁻¹⁴		W / \ Hz
Rise / Fall Time	t _r / t _f	$V_R = 10 \text{ V}, \text{ R}_L = 1 \text{k}\Omega,$ $\lambda = 850 \text{nm}$		50 / 50		ns



* Spectral Sensitivity vs. Wavelength

* Pattern for the reflow soldering

