- Focal Lengths Available from 10.0 mm to -2000.0 mm
- Focal Lengths Tolerance: $\pm 1 \%$
- Diameter:
$3.0 \mathrm{~mm} \sim 200.0 \mathrm{~mm}$
- Scratch \& Dig:

80/50~20/10

- Spherical Surface Power: 5 Fringes~1 Fringes
- Spherical Surface Irregularity:
$\lambda / 2 \sim \lambda / 8$
- Center Error:

5 arc min $\sim 30 \operatorname{arc}$ Sec

Plano-Convex Lenses have a positive focal length and near-best-form shape for infinite and finite conjugate applications. They can be employed to converge collimated beams or collimate light from a point source. To minimize the introduction of spherical aberration, a collimated light source should be incident on the curved surface of the lens when being focused and a point light source should be incident on the planar surface when being collimated.

The focal length of each lens can be calculated using a simplified thick lens equation:

$$
f=R /(n-1),
$$

where n is the index of refraction and R is the radius of curvature of the lens surface.

They can be also coated with MgF2 to protect the surface or AR coated to increase the transmission.

