Professional Manufacture of Crystals Over 12 years

-. Nd:YLF

Nd:YLF is an excellent crystal for modelocked operation because it combines the characteristics of weak thermal lensing, large fluorescence line width and naturally polarized oscillation.

■ Advantages of Nd:YLF Crystals :

High power, low beam divergence, efficient single mode operation High average power Q-switching at a moderate repetition rate Linear polarized resonators for Q-switching and frequency doubling Potential uniform mode for large diameter rods or slabs Stimulated emission cross section is favorable for low CW threshold Thermal lensing lower than that of YAG

1053nm output of Nd:YLF matches gain curves of Nd:Glass and performs well as an oscillator and pre-amplifier for this host.

■ Specifications

Dopant concentration	Nd: ~1.0 at%
Orientation	[100] or [001] within 5°
Wavefront distortion	≤0.25λ/inch @632.8nm
Rod sizes	Diameter 3~8mm, Length 10~120mm
	Upon request of customer
Dimensional tolerances	Diameter: +0.00/-0.05mm, Length: ± 0.5mm
Barrel finish	Ground or polished
Parallelism	≤ 10"
Perpendicularity	≤ 5′
Flatness	≤ λ/10@632.8nm
Surface quality	10-5 (MIL-O-13830B)
Chamfer	0.15±0.05mm
AR coating reflectivity	≤0.25%@1047/1053nm

Physical and Chemical Properties

Crystal Structure	Tetrago nal
Melting Point	825℃
Moh Hardness	4-5
Density	3.95g/cm³
Young's Modulus	7.5×10 ¹¹ dynes cm ⁻²
Tensile Strength	3.3×10 ⁸ dynes cm ⁻²
	[100]Direction:13×10 ⁻⁶ /K
Thermal Expansion Coefficient	[001]Direction:8×10 ⁻⁶ /K
Thermal Conductivity	0.06W/cm/K

Professional Manufacture of Crystals Over 12 years

■ Optical and Spectral Properties

Laser transition	⁴ F _{3/2} → ⁴ I _{11/2}	
Laser wavelength	1047nm, 1053nm	
Emission cross sostion	1.8×10 ⁻¹⁹ cm²(E∥C) @1047nm	
Emission cross section	1.2×10 ⁻¹⁹ cm²(E⊥C) @1053nm	
Fluorescence lifetime	485µs (1.0at%Nd)	
Index of refraction	n₀=1.443 n₂=1.464 @633nm	
	n _o =1.448 n _e =1.470 @1064nm	

_. Tm:YLF

Tm:YLF is the important middle infrared laser crystal. Because Tm:YLF is negative uniaxial crystal, whose thermal refractive index coefficient is negative, some thermal distortion may be counteracted and high-quality light can be output. Conveniently pumped at 792nm, 1.9µm linearly polarized beam is output in a axis, and non-linearly polarized beam is output in c axis.

■ Advantages of Tm:YLF Crystals :

Linearly polarized output beam Little heat effect while laser Effective cross relaxing of Tm ions Relatively high efficiency with LD pumping

Professional Manufacture of Crystals Over 12 years

■ Specifications

Dopant concentration	Tm: 0~5at%
	Upon request of customer
Orientation	[100] or [001] within 5º
Wavefront distortion	≤0.25λ/25mm @632.8nm
Rod sizes	Diameter 3~9.5mm, Length 5~120mm
	Upon request of customer (rod or slab)
Dimensional tolerances	Diameter:+0.00/-0.05mm , Length: ± 0.5mm
Barrel finish	Ground or polished
Parallelism	≤10"
Perpendicularity	≤5'
Flatness	≤ λ/10@632.8nm
Surface quality	10-5 (MIL-O-13830B)
Chamfer	0.15±0.05mm
AR coating reflectivity	≤0.25%

Optical and Spectral Properties

Laser transition	${}^{3}F_{4} \rightarrow {}^{3}H_{6}$
Laser wavelength	1.9µm
Index of refraction	n _o =1.443 <u>n_e</u> =1.464 @633nm
	n _o =1.448 <u>n_e</u> =1.470 @1064nm

Professional Manufacture of Crystals Over 12 years

Physical and Chemical Properties

Crystal Structure	Tetragonal
Melting Point	825℃
Moh Hardness	4-5
Density	3.95g/cm³
Thermal Conductivity	0.06W/cm/K
Young's Modulus	7.5×10 ¹¹ dynes cm ⁻²
Tensile Strength	3.3×10 ⁸ dynes cm ⁻²
Thermal Supervise Coefficient	[100] Direction:13×10 ⁻⁶ /K
mennar expansion coefficient	[001] Direction:8×10 ⁻⁶ /K

Ξ. Ho:YLF

Ho:YLF is the important middle infrared laser crystal. Ho:YLF pumped ZGP crystal at 1.9µm, so 2.05µm linearly polarized beam can be output.

■ Advantages of Ho:YLF Crystals :

Linearly polarized output beam

Little heat effect while laser

Conveniently pumped at $1.9 \mu m$

Professional Manufacture of Crystals Over 12 years

■ Specifications

Dopant concentration	Ho: 0~3at%
	Upon request of customer
Orientation	[100] or [001] within 5º
Wavefront distortion	≤0.25λ/25mm @632.8nm
Rod sizes	Diameter 3~9.5mm, Length 5~120mm
	Upon request of customer (rod or slab)
Dimensional tolerances	Diameter:+0.00/-0.05mm , Length: ± 0.5mm
Barrel finish	Ground or polished
Parallelism	≤10"
Perpendicularity	≤5'
Flatness	≤ λ/10@632.8nm
Surface quality	10-5 (MIL-O-13830B)
Chamfer	0.15±0.05mm
AR coating reflectivity	≤0.25%

■ Optical and Spectral Properties

Laser transition	⁵ I ₇ → ⁵ I ₈
Laser wavelength	2.05µm
Index of refraction	n _o =1.443 <u>n</u> e=1.464 @633nm
	n _o =1.448 <u>n_e</u> =1.470 @1064nm

Professional Manufacture of Crystals Over 12 years

Physical and Chemical Properties

Crystal Structure	Tetragonal
Melting Point	825℃
Moh Hardness	4-5
Density	3.95g/cm³
Thermal Conductivity	0.06W/cm/K
Young's Modulus	7.5×10 ¹¹ dynes cm ⁻²
Tensile Strength	3.3×10 ⁸ dynes cm ⁻²
Thermal Supervise Coefficient	[100] Direction:13×10 ⁻⁶ /K
mennar expansion coefficient	[001] Direction:8×10 ⁻⁶ /K

四. Pr:YLF

Only few laser materials have necessary properties for realization of lasing in visible spectral range. Trivalent praseodymium (Pr^{3+}) is known to be an interesting laser ion for using with solid-state lasers in the visible spectral range because of its energy levels scheme, providing several transitions in the red (640 nm, ${}^{3}P_{0}$ to ${}^{3}F_{2}$), orange (607 nm, ${}^{3}P_{0}$ to ${}^{3}H_{6}$), green (523 nm, ${}^{3}P_{0}$ to ${}^{3}H_{5}$), and dark-red (720 nm, ${}^{3}P_{0} \, {}^{3}F_{3} \, {}^{+3}F_{4}$) spectral regions. Pr^{3+} :YLF has been found as promising laser material for producing visible lasers directly.

Orientation	a-cut
Clear aperture	>90%
Face dimensions tolerance	+0/-0,1 mm

■ Specifications

Professional Manufacture of Crystals Over 12 years

Length tolerance	\pm 0,1 mm
Protective chamfers	<0,1 mm at 45°
Surface quality	10-5 (MIL-O-138 30 B)
Coatings	AR(R<1%)@440-444 nm + AR(R<0,6%)@500-700 nm on both faces
Laser induced damage threshold	>5 J/cm ² @532 nm, 10 ns

Physical and Chemical Properties

Typical doping level	0,1-0,25 at.%
Absorption peak wavelength	~500 nm
Absorption peak wavelength	
Absorption cross-section at peak wavel ength	$38 \times 10\text{-}20 \text{ cm}^2$
Laser wavelength	790 (670-1070) nm
Lifetime of energy level	3,2 µs
Emission cross-section	@790 nm $41 \times 10^{-20} \text{ cm}^2$
Refractive index	@800 nm 1,76
Crystal structure	hexagonal
Density	3,98 g/cm ³
Mohs hardness	9
Thermal conductivity	$33 \text{ Wm}^{-1} \text{ K}^{-1}$
dn/dT	$13 \times 10^{-6} \text{ K}^{-1}$
Thermal expansion coefficient	$5 \times 10-6 \text{ K}^{-1}$

Professional Manufacture of Crystals Over 12 years

H. Yb³⁺:YLF

 Yb^{3+} :YLF laser crystals have better thermo-optical properties than isotropic host like YAG, its large thermal conductivity provides efficient heat extraction. Moreover, Yb^{3+} :YLF has wide emission cross-section, with peak value at the lasing wavelength comparable to that found in Yb^{3+} :Sr₃Y(BO₃)₃ and Yb³⁺:Ca₄GdO(BO₃)₃ laser crystals.. Also, YLF crystal has advantage by ytterbium ions to be doped to a high degree.

Orientation	a-cut
Clear aperture	>90%
Face dimensions tolerance	+0/-0,1 mm
Length tolerance	\pm 0,1 mm
Protective chamfers	<0,1 mm at 45°
Surface quality	10-5 (MIL-O-138 30 B)
Coatings	AR(R<0,5%)@960 nm + AR(R< 0,15%)@1000-1060 nm on both faces
Laser induced damage threshold	>10 J/cm2@1030 nm, 10 ns

■ Specifications

Physical and Chemical Properties

Typical doping level	5-20 at.%
Absorption peak wavelength	960 nm
Absorption cross-section at peak wavel ength	$10.5 \times 10^{-21} \mathrm{cm}^2$
Laser wavelength	1017 nm
Lifetime of energy level	2,1 ms
Emission cross-section @1053 nm	$4,1 \times 10^{-21} \mathrm{cm}^2$
Refractive index @1040nm	~1,4
Crystal structure	tetragonal
Density	3,95 g/cm ³
Mohs hardness	5
Thermal conductivity	$6 \text{ Wm}^{-1}\text{K}^{-1}$
dn/dT	-4,6 × 10 ⁻⁶ (IIc) K ⁻¹ , ${}^{-6}$,6 × 10 ⁻⁶ (IIa) K ⁻¹
Thermal expansion coefficient	8×10^{-6} (IIc) K ⁻¹ , 13 × 10 ⁻⁶ (IIa) K ⁻¹