

Controlling polarization is essential within the fiber-optics industry – integrating this function with computer controlled capability enhances measurement speed, accuracy, and overall productivity.

FiberControl's Motorized Polarization Controller (MPC-1) provides stable and rapid control of the state-of-polarization of laser sources without altering the time-averaged power. Utilizing the patented all fiber Lefèvre loop design, this time-tested approach has proven to provide excellent control with ultra-low power variations (PDL). The flexibility inherent within this design allows for a wide range of applications from component testing to PMD related activities. The continuous length of fiber enables high power and ultra-low insertion loss. This design offers a wide range of AutoScan rates and high incremental angular resolution. Supply voltages range from 85 VAC to 264 VAC (47 Hz to 63 Hz).

FEATURES:

- Single-fiber design
- Ultra-low insertion loss, PDL, and back-reflection
- Convenient save/recall settings
- Multi-rate polarization scrambling
- AutoScan operation with a wide dynamic range of rotational speed
- GPIB IEEE 488.2 & RS-232 and BTM standard
- Labview 6.0 driver provided. May be used with C, C++, VB, or any other development language featuring GPIB support

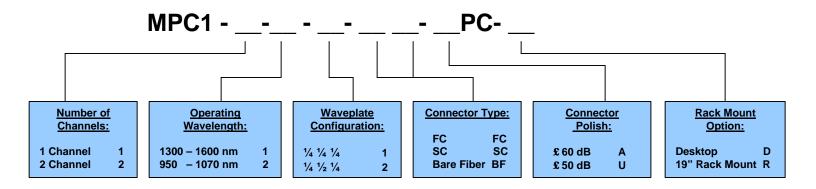
APPLICATIONS:

- Component level PDL measurements
- Sub-system PDL testing
- General purpose in-line control of the SOP
- · Low to medium-speed polarization scrambler
- Polarization pattern generator
- Maximize or minimize signal intensity with feedback from optical power meters (or OSA)
- Component within PMD emulator
- Component within PMD compensator
- Polarization stabilizer

SPECIFICATIONS (Optical, Line Power, Physical):

Optical Specifications		
Insertion-Loss (typical) 1	< 1.00 dB	
Extinction Ratio (typical) ²	> 40 dB	
Coverage of Poincaré Sphere	100 %	
Polarization Dependent Loss ²	< 0.002 dB	
Wavelength Operating Range	1300 nm to 1600 nm,	
	or 980 nm region	
Connector Types	FC, SC, or Bare Fiber	
Return Loss (Connector polish)	> - 50 dB (0°)	
	> - 60 dB (8°, fusion splice)	
Max. Signal Power ³	+30 dBm	
Max SOP Transit Time	2880 °/sec	
Rotational Resolution ⁴	0.15 °/step	
Angular Accuracy (averaged over 360°) 5	± .00024°	
Angular Repeatability (1s) 5	± .014°	
Rotation Stability (Drift) Over Time	Below Measurement Limit (0.0069°)	
Rotational Speed	1 – 2880 °/sec @ 33 °/sec	
Rotation Speed Dynamic Range	2880	
Settling Time	0.007 sec - 0.015 sec	
Number of AutoScan Rate Settings	254	
Number of Save/Recall Settings	6	

^{1 1550} nm with connectors


⁵ Experimentally determined over representative sample of early production units, not guaranteed/non-warranted specification

Instrumentation Control		
Parallel Interface	Standard GPIB (IEEE 488.2)	
Serial Interfaces	Standard EIA-RS232	
Response Time [†]	< 5 msec	
Software Compatibility	LabView 6.0, C, C++, or any GPIB-	
w/ GUI interface	compatible language	
SOP AutoScan	User algorithms entered at front	
(pseudo-random)	panel or via GUI	
Waveplate Actuation	3-Phase stepper, 1.2º full-step res.	
	Micro-stepping excitation controller.	
System Controller	Embedded Microcontroller, 20 MHz	
Operating System	Windows9x, 2000 Pro, Win NT 4.0	

|--|

Line Power / Temperature		
Electrical Input Voltage	85-264 ± 10% VAC	
Line Frequency	47-63 Hz	
Power Dissipation	24W	
Power Receptacle	IEC 320	
Operating Temperature	- 10 °C to + 35 °C	

Physical	
Dimensions MPC1-1 (H x D x W)	8.9 x 40 x 23.5 cm 3½ x 15 ¾ x 9 ¼ in.
Weight	3.23 kg (7.12 lbs.)

² 1550 nm with FC/PC connectors, completely polarized light

³ Below SRS limit (SBS limit determined by the spectral broadening of user's source)

⁴ 1/8 stepping of 1.2 °/step stepper motor