

HORIBA Scientific

Brings microscope functionality to your spectrometer

MicOS Microscope Optical Spectrometer

FLUORESCENCE

GRATINGS & OEM SPECTROMETERS

OPTIGAL COMPONENTS

PARTICLE CHARACTERIZATION

RAMAN

SPECTROSCOPIC ELLIPSOMETRY

SPR IMAGING

Using a standard microscope for luminescence characterization often means inefficient fiber-optic coupling to the spectrometer, and difficult access for many sample configurations, such as side-emitting devices, or upright cryostats. Nor do standard microscopes offer flexibility for coupling multiple lasers for photoluminescence excitation.

HORIBA Scientific's MicOS merges microscopy and spectroscopy, to provide optimal coupling from sample all the way to the detector. Down-looking or side-looking configurations for side-emitting devices or upright cryostats

give you flexible sample access. An optional, fully automated stage for mapping and sample-positioning is available. The MicOS offers a flexible platform for the use of multiple lasers for sample excitation. The system includes a vision camera so you always see what you are measuring.

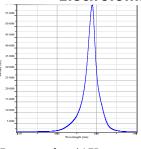
The MicOS is the most cost-effective and flexible microspectrometer solution!

Specifications*

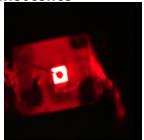
Spectrometers		iHR320			iHR550		
Spectral range ¹		200 nm to 1600 nm					
Spectral resolution ²		0.18		nm		0.1 nm	
Detector	Туре	CCD 1024 × 256 OE ³	:	IGA 512 × 25		Single-channel	
	Range	200–1050 nm 800–1600		800–1600 nm	n 190–1600 nm ⁴		
Excitation laser ⁵		532 nm		633 nm	785 nm		
Microscope	Magnification	10×		50×	100×		
Objective	Spot size	100 µm		<20 µm	<10 µm		
Sample stage		xyz (manual or motorized)					

 $^{^{\}rm 1}\textsc{Depends}$ on choice of objective, filters, and detectors.

Photoluminescence



Aggregate of fluorescent beads



Fluorescence map overlay at 700 nm, following excitation at 633 nm

Electroluminescence

Emission of red LED

Red LED

Explore the future

Automotive Test Systems | | Process & Environmental | | Medical | | Semiconductor | | Scientific

 $^{^2\}mathrm{For}\ 1200\ \mathrm{gr/mm}\ \mathrm{grating}\ \mathrm{and}\ \mathrm{open\text{-}electrode}\ \mathrm{CCD}$

 $^{^3\}text{BIUV}$, BIVS, and BIDD formats available for specific quantum-efficiency requirements.

⁴Needs two detectors to cover entire range.

⁵Other options are available upon request.

^{*}Specifications are subject to change without notice.

Feature	Microspectroscopy Benefits				
Fully integrated system	Optimum coupling from the sample all the way to the detector				
Down-looking and side- looking configurations	Flexibility to measure luminescence from side-emitting devices and samples in upright cryostats				
Multiple lasers	Can accommodate multiple fiber-coupled lasers for excitation at different wavelengths				
Optional automated stage	Allows mapping functions and accurate sample-positioning				
Vision camera included	See exactly what you are measuring				
LabSpec Software	Complete control of an entire spectrograph system with full analysis capabilities				
Wide spectral range	Collect emission spectra from 200 nm up to 1600 nm				

info.sci@horiba.com www.microspectroscopy.com

USA: +1 732 494 8660 **UK:** +44 (0)20 8204 8142 **China:** +86 (0)21 6289 6060 France: +33 (0)1 69 74 72 00 Italy: +39 2 5760 3050 Brazil: +55 (0)11 5545 1500

JOBIN YVON Technology

Germany: +49 (0)89 4623 17-0 **State of the state of the**

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

igoplus