

The All New HarmoniXX Series

Wavelength Conversion for Ultrafast Lasers

The All New HarmoniXX Series

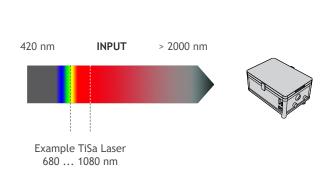
Meet the New HarmoniXX Wavelength Conversion Series from APE

- The HarmoniXX series has been completely re-engineered to incorporate stepper motors for precise wavelength adjustment. This enhancement makes optimum wavelength conversion quicker and easier than ever before.
- With its modular design, the HarmoniXX series offers the broadest wavelength range on the market and can be adapted to nearly all lasers, whether tunable or fixed frequency.
- The new models also feature automated output power optimization at the press of a button.

HarmoniXX SHG/THG/FHG at a Glance

- High conversion efficiency
- Easy alignment and automatic wavelength tuning
- Suitable for both tunable and fixed frequency fs and ps lasers
- Excellent pointing stability and beam profile
- Remote operation via software GUI

Tunable Harmonic Generation


SHG/THG/FHG Wavelength Conversion for Ultrafast Lasers

- The HarmoniXX product line is a series of frequency converters for ultrafast lasers. Built as a modular system, it is ideal for Ti:Sapphire lasers as well as many other wavelength ranges, covering Second Harmonic Generation (SHG), Third Harmonic Generation (THG) and Fourth Harmonic Generation (FHG).
- The focus is on user-friendliness and a compact design. By featuring a quick exchange of optics, the HarmoniXX devices can be used for a wide pulse duration range, from femtoseconds to several picoseconds.
- All units are optimized for highest conversion efficiency at various laser power levels. They also display minimum pulse broadening while maintaining good spatial beam profile.

Harmonic Generation: Doubling, Tripling, Quadrupling

- Generation of higher harmonics is a simple way to generate new photons with twice (or even higher) the energy (or frequency), and therefore to achieve a shorter wavelength. As many lasers emit light in the (near) infrared wavelength region, the HarmoniXX series by APE extends the use of lasers for a wider range of applications.
- The HarmoniXX series features frequency doubling, tripling and quadrupling. Starting from the lowest available wavelength such as that from a Ti:Sapphire laser, at 680 nm, it is possible to reach 340 nm (SHG), 227 nm (THG) or 210 nm (FHG 2+2). HarmoniXX FHG 3+1 is able to reach even 190 nm.

< 200 nm

SHG
340 ... 540 nm

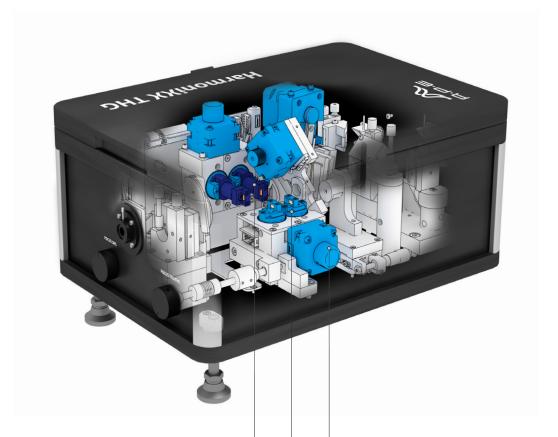
THG
227 ... 360 nm

FHG 2+2
210 ... 230 nm

FHG 3+1

OUTPUT

> 1000 nm


[•] HarmoniXX devices can convert wavelengths over a wide range. Not only for tunable laser systems, the HarmoniXX is taking care of the wavelength alignment.

[•] HarmoniXX devices expand the wavelength range for all fs and ps laser systems. The illustration above shows the output wavelength range of a Ti:Sa laser combined with a frequency doubling (SHG), -tripling (THG), or -quadrupling (FHG) system.

HarmoniXX

Discover Engineering at its Best

Numerous advances have been made in both performance and usability. In addition to precise motor control on all critical adjustable parts, the HarmoniXX series features a special walk-off compensation mechanism, designed for highest stability and an unprecedented level of wavelength optimization.

More Wavelength and fs \prime ps Coverage

Quick Optics Exchange

The right choice of non-linear crystals and other optical components is essential for high-quality wavelength conversion. A quick exchange of optics makes it possible to adapt the HarmoniXX to different laser parameters, providing more freedom in terms of wavelength coverage in femtosecond or picosecond operation.

Easy, Intuitive, and Precise Operation

■ Motorization & Sensors

All HarmoniXX wavelength tunable components are driven electro-mechanically for precise alignment. The combination of motorization and the power sensor option allows the user to optimize the output power at the press of a button. This ensures 100 % repeatability and consistently accurate alignment.

Walk-off Compensation

■ Coupled Crystal Movement

The special design of APE's coupled crystal movement compensates the beam walk-off in nonlinear crystals and therfore secures highest pointing stablility. Whichever wavelength is used, you can be sure of optimum crystal parameters and conversion efficiency.

... Changing Wavelength Conversion

Precise Motor Control is the New Standard

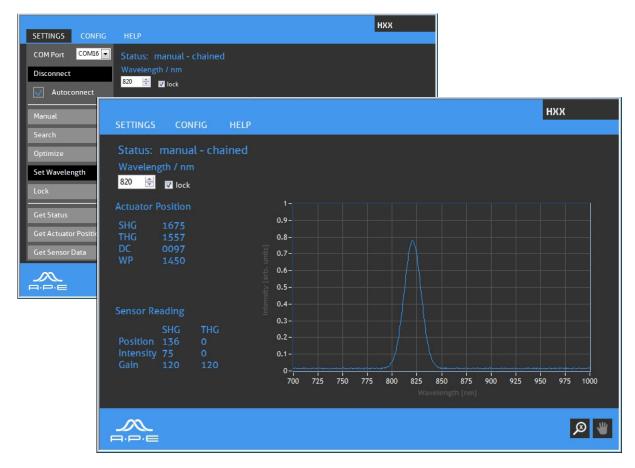
- The APE HarmoniXX series is now equipped with precise stepper motors to control all elements that require regular adjustment via the software GUI.
- This eliminates the need to open the device at all during alignment, which further improves the laser safety of the devices and keeps the optical elements free from contamination.
- APE offers the user all necessary tools for integration of the HarmoniXX into an automated laboratory setup.

Wavelength Coverage in Flexible Design

A flexible design, with a quick optics exchange for greater utility, allows the HarmoniXX to be configured for different laser types or alternative wavelength combinations and pulse durations. The quick-exchange optics are color-coded for a simple assignment of the different crystal types.

Auto Power Optimization

The HarmoniXX automatically optimizes all elements to maximum output power, even if the exact laser wavelength is unknown or changing. This feature is optionally available for all SHG, THG and FHG (2+2) HarmoniXX devices.


Walk-off Compensation for Exceptional Performance

The integrated walk-off compensation design ensures constant pointing stability and enables an enhanced conversion efficiency and beam quality while changing the wavelength of the HarmoniXX. The assembly set consists of entangled crystal movement compensators for a perfect crystal match in all experimental conditions.

HarmoniXX Software

HarmoniXX Software GUI

- The HarmoniXX software enables the user to control all relevant parameters through a software GUI on the PC and gives direct access to the motors.
- This software allows continuous tracking and automatic tuning of the wavelength when a spectrometer is connected.
- Integration into an automated laboratory setup is simple via the TCP/IP interface. Sample command sets are provided by APE.

Software Interface

HarmoniXX The Industry Standard

Full Support for Industry Standards and Homebuilt Systems

- The well-established HarmoniXX family handles a wide variety of laser systems, pulse widths, and wavelengths from different manufacturers and homebuilt solutions.
- If your preferred system is not listed, contact us. We are always happy to help.

■ Chameleon Coherent ■ Mira 900 Coherent

Chameleon Compact OPO Coherent/APEMira OPO

Coherent/APE Discovery Coherent Chameleon

Vision Coherent ■ Chameleon Ultra ■ Fidelity

Coherent Paladin Advanced Coherent

+ Levante Emerald OPO Coherent/APE - RegA

Coherent ■ Vitara Coherent ■ Inspire Spectra Physics

■ Inspire OPO Spectra Physics ■ MaiTai Spectra

Physics - Tsunami Spectra Physics - taccor tune Laser

Quantum Levante IR OPO APE Levante Emerald

OPO APE picoEmerald APE Emerald Engine APE

OPO-X APE • Goji Amplitude • Orange HP + Levante

IR Menlo/APE - FemtoFiber ultra 1050 + Levante IR

Toptica/APE ■ Aeropulse NKT

HarmoniXX Specifications

Input Wavelength Range	< 420 > 2000 nm (Spanning 1 Octave with on	ne Optics Set; e.g. 650 - 1300 nm)
Output SHG	< 210 > 1000 nm (e.g. 340 540 nm for TiS	ia)
Output Fundamental	Available	
Pulse Duration	fs or ps	
Conversion Efficiency	E.g. 40 $\%$ at 130 fs ; e.g. 15 $\%$ at 2 ps	
Walkoff Compensation	Built-in mechanical walkoff compensator	
Polarization (Linear)	Input: horizontal, SHG Out: vertical, Fundamen	ntal Out: horizontal
Automation	Fully Motorized, GUI /Software included, Auto	Power Adjustment as Option
THG		
THG Input Wavelength Range	680 > 2000 nm (Spanning 1 Octave with one	Optics Set; e.g. 650 - 1300 nm)
	680 > 2000 nm (Spanning 1 Octave with one Down to < 230 nm (e.g. 227 360 nm for TiSa)	
Input Wavelength Range	, , ,	
Input Wavelength Range Output THG	Down to < 230 nm (e.g. 227 360 nm for TiSa	
Input Wavelength Range Output THG Output SHG	Down to < 230 nm (e.g. 227 360 nm for TiSa Available	

Built-in mechanical walkoff compensator

optimum efficiency.

Input: horizontal, THG Out: horizontal, SHG Out: vertical, Fundamental Out: vertical

Unlike conventional triplers, the HarmoniXX THG requires less adjustment efforts because

no separation and recombination of the interacting beams is needed. This user-friendly feature has one common optical beam path for all interacting beams. It is implemented by means of a proprietary delay compensator and provides consistent spatial overlap for

Fully Motorized, GUI / Software included, Auto Power Adjustment as Option

FHG 2+2

Automation

Walkoff Compensation

Polarization (Linear)

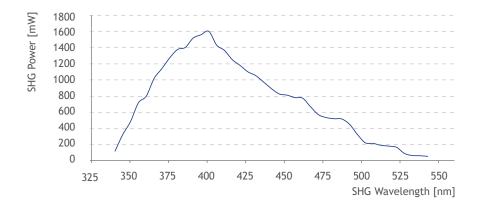
Delay Compensation

SHG

Input Wavelength Range	840 920 nm (other wavelengths on request)	
Output	Down to 210 nm (e.g. 210 230 nm for TiSa)	
Output SHG, Fundamental	Available	
Pulse Duration	fs or ps	
Conversion Efficiency	FHG 4 % (fs)*	*depends on laser model / pulse duration
Walkoff Compensation	Built-in mechanical walkoff compensator	
Polarization (Linear)	Input: horizontal, FHG Out: horizontal, SHG Out: vertical, Fundamental Out: horizontal	
Automation	Fully Motorized, GUI / Software included, Auto Power Adjustment as Option	

... Specifications

FHG 3+1



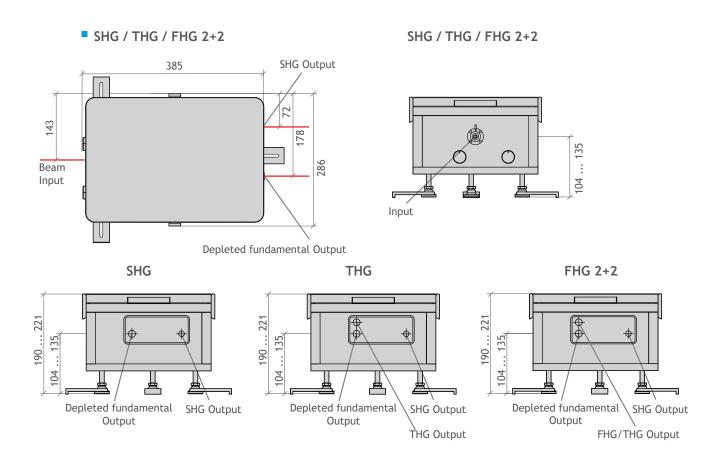
Input Wavelength Range	760 920 nm (other wavelengths on requ	est)
Output	Down to 190 nm (e.g. 190 210 nm for TiSa)	
Output THG, SHG, Fundamental	Available	
Pulse Duration	fs or ps	
Conversion Efficiency	FHG < 0.1 % (fs)*	*depends on laser model / pulse duration
Polarization (Linear)	Input: horizontal, FHG Out: vertical, THG Out: horizontal, SHG Out: vertical, Fundamental Out: vertical	
Automation	On request	

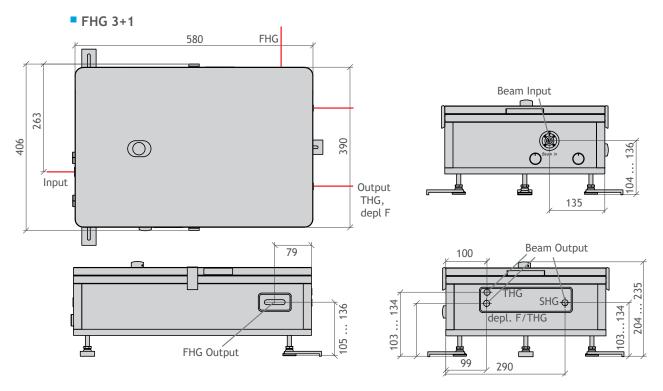
Options

Auto Power Adjustment	Automated output power optimization at the press of a button
Quick Exchangable Optics Set	Wavelength range exchange sets Pulse duration exchange set fs - ps

SHG Power Pumped with Ti:Sapphire

Typical tuning curve of HarmoniXX SHG power pumped with TiSa laser at about 3.5 W, 80 MHz, 130 fs.


HarmoniXX THG, SHG in THG and FHG 2+2 Power Pumped with Ti:Sapphire



Typical tuning curves of HarmoniXX THG, SHG in THG and FHG 2+2 power pumped with TiSa laser at about 3.5 W, 80 MHz, 130 fs.

All Dimensions in mm

HarmoniXX Technical Drawings

APE PRODUCT PORTFOLIO

Optical Parametric Oscillators

fs / ps MHz OPO | fixed frequency pumped fs / ps MHz OPO | Ti:Sa laser pumped ns kHz | fixed frequency pumped OPO pump sources

Optical Parametric Amplifier

fs high power OPA | fixed frequency pumped

Laser Diagnostics

Autocorrelators Spiders Spectrometers Peak Power Monitoring

Wavelength Conversion

Harmonic Generators SHG / THG / FHG Difference Frequency Generation (DFG)

Pulse Manipulation

Pulse Pickers Cavity Dumpers Optical Delay Lines Pulse Compressors Pulse Shapers

Acousto-Optics

Optical Modulators Intensity Modulators Frequency Shifters

Contact

Your local contact:

APE Angewandte Physik & Elektronik GmbH

Plauener Str. 163-165 | Haus N | 13053 Berlin | Germany

T: +49 30 986 011-30 F: +49 30 986 011-333 E: sales@ape-berlin.de www.ape-berlin.de

APE follows a policy of continued product improvement.

Therefore, specifications are subject to change without notice.

© APE GmbH|November 2017 | Rev. 3.2.0.