Semiconductor

FilmTek 2000 PAR

(https://sci-

soft.com/products/semicondultion/o-spot DUV Spectroscopic Reflectometry

Advanced

Packaging & TSV (https://sci-

packaging-tsv/)

Photonics & Telecom (https://sci-

telecom/)

Compound Semiconductor (https://sci-

semiconductor/)

Data Storage

(https://scisoft.com/products/data-

storage/)

Flat Panel Display (https://sci-

panel-display/)

soft.com/products/flat-

LED (https://scisoft.com/products/led/)

R&D (https://scisoft.com/products/rd/)

Wafer Manufacturing

(https://scisoft.com/products/wafermanufacturing/)

Solar Photovoltaic

(https://sci-

soft.com/products/solarphotovoltaic/)

Thin Film Design Software (https://sci-

soft.com/products/thinfilm-design-

software/)

high-throughput, fully-automated mapping of soft.com/products/advanced-patterned wafers for development and production environments. This system combines patented DUV-NIR reflectometry with wafer auto-loader and

(https://sci-soft.com/media/FilmTek2000PAR.jpg)

The FilmTek™ 2000 PAR is a low-cost solution for

pattern recognition to deliver unmatched soft.com/products/photonics-metrology performance at this price point.

> The FilmTek™ 2000 PAR utilizes SCI's patented parabolic mirror technology to measure wavelengths from the deep ultra-violet to the near infrared with a spot size as small as 13µm.

This system comes with advanced material modeling software to make even the most soft.com/products/compound_{rigorous} of measurement tasks reliable and intuitive. FilmTek™ software includes fully usercustomizable wafer mapping capabilities to rapidly generate 2D and 3D data maps of any measured parameter. In addition to user-defined patterns, standard map patterns include polar, X-Y, rθ, or linear.

> FilmTek™ 2000 PAR incorporates SCI's generalized material model with advanced global optimization algorithms for simultaneous determination of multiple film characteristics within a fraction of 1 second per site.

Key Features:

- Automated stage with autofocus
- Automated wafer handling
- Camera for imaging measurement location
- Pattern recognition
- 50 micron spot size

Measurement Capabilities:

Simultaneous determination of:

- Multiple layer thicknesses
- Indices of refraction [n(λ)]
- Extinction (absorption) coefficients [k(λ)]
- Energy band gap [E_g]
- Composition (e.g., %Ge in SiGe_X, % Ga in Ga_XIn_{1-X}As, %Al in Al_XGa_{1-X}As, etc.)
- Surface roughness
- Constituent, void fraction
- Crystallinity/Amorphization (e.g., degree of crystallinity of Poly-Si or GeSbTe films)
- · Film gradient

Optional Features:

- Small spot size (13 μm)
- Pattern recognition (Cognex)
- Cassette to cassette wafer handling
- SECS/GEM

Applications

Virtually all translucent films ranging in thickness from less than 100 angstroms to approximately 150 microns can be measured with high precision. Typical applications include:

- Semiconductor and Dielectric materials
- Multilayer optical coatings
- · Optical antireflection coatings
- · Electro-optical materials
- Solar cells

- · Computer disks
- Coated glass
- Laser mirrors Thin metals
- Biomedical

Example Films

- SiO_x
- SiN_x
- DLC
- SOG Photoresist
- · Thin metals

- a-Si
- a-C:H
- ITO
- Polysilicon
- Polyimide
- Low k dielectric films

Example Substrates

- Silicon
- SOI
- SOSGaAs

- PET
- Aluminum
- Copper
- Glass

Technical Specifications			
Film thickness range:	3nm to 150μm		
Film thickness accuracy:	±1.5Å for NIST traceable standard oxide 1000Å to 1μm		
Spectral range:	190nm to 1700nm (240nm to 1000nm is standard)		
Measurement spot size:	13μm to 300μm (50μm is standard)		
Wafer size:	50mm to 300mm (150mm standard)		
Spectral resolution:	0.3-2nm		
Light source:	Regulated deuterium-halogen lamp (2,000 hrs lifetime)		
Detector type:	2048 pixel Sony linear CCD array / 512 pixel cooled Hamamatsu InGaAs CCD array (NIR)		
Computer:	Multi-core processor with Windows™ 10 Operating System		
Measurement time:	<1 sec per site (e.g., oxide film)		
Data acquisition time:	0.2 sec		

Performance Specifications				
Film(s)	Thickness	Measured Parameters	Precision (1σ)	
Oxide / Si	200-500 Å	t	0.5 Å	
	500-10,000 Å	t	0.25 Å	
	1000 Å	t,n	0.25 Å / 0.001	
Nitride / Si	200-10,000 Å	t	0.25 Å	
Photoresist / Si	200-10,000 Å	t	0.5 Å	
a-Si / Oxide / Si	200-10,000 Å	t	0.5 Å	

© Copyright 1993 - 2020 Scientific Computing International. All Rights Reserved.