

Fiber-Coupled PPLN WEWE **Waveguide Device**

Parameter	Values	Comments
Material	LiNbO₃ Waveguide	Titanium, Annealed Proton Exchange, Reverse Proton Exchange Waveguides
Input Wavelength Range – Quasi- Phase Matching Wavelength (QPM)	1550 nm to 2128 nm	Can be specified
Output Wavelength –SHG Wavelength	775 nm to 1064 nm	Can be specified
Spectral Bandwidth	0.2 nm to > 1 nm	Can be specified
Conversion Efficiency	> 25% per W > 100% per W	For APE & Ti waveguides For RPE waveguide
Fiber-fiber Loss	< 4 dB	@ Fundamental
Fiber Optic Connectors	FC/APC	Other connector varieties also available
Package	14-pin Butterfly with TEC	Unpackaged devices available

Product Applications of SRICO's PPLN Devices:

- QFC of Single Photons for Advanced Detector Technology and **Hybrid Quantum Systems**
- Producing Single-Photon and Entangled-Photon Sources
- Converting Mid-IR to Visible for Single Photon Detectors
- Frequency Combs for Imaging and Spectroscopy
- Light Engines for Displays
- SFG, DFG and SHG Generation from Visible to Mid-IR
- Spontaneous Parametric Down Conversion (SPDC)
- All-Optical Switching