


Er:YAG Crystals

- High slope efficiency
- Operate well at room temperature
- Eye-safe laser wavelength

Erbium-doped yttrium aluminum garnet or Er:YAG crystals is an excellent laser crystal which lasers at 2.94 μ m, This wavelength is the most readily absorbed into water and hydroxylapatite of all existing wavelengths and is considered a highly surface cutting laser. The 2.94 μ m is a eye-safe wavelength, which makes **Er:YAG crystals** widely be used in medical applications as dental (hard tissues), orthopedics, etc.

SPECIFICATIONS

Specifications	
Dopant concentration	Er: ~50 at%
Wavefront Distortion	≤0.125\/inch(@1064nm)
Extinction Ratio	≥25 dB
Rod Sizes	Diameter:3 \sim 6mm, Length:50 \sim 120 mm Upon
	request of customer
Dimensional Tolerances	Diameter:+0.000"/-0.002",
	Length: ± 0.02"
Barrel Finish	Fine Ground
Parallelism	≤10"
Perpendicularity	≤5′
Flatness	λ/10
Surface Quality	10/5(MIL-PRF-13830B)
AR Coating Reflectivity	≤ 0.25% (@2940nm)

Basic Properties

Physical and optical properties	
Laser Transition	$^4\mathrm{I}_{11/2}$ to $^4\mathrm{I}_{13/2}$
Laser Wavelength	2940nm
Photon Energy	6.75×10 ⁻²⁰ J(@2940nm)
Emission Cross Section	$3 \times 10^{-20} \text{ cm}^2$
Index of Refraction	1.79 @2940nm
Pump Bands	600~800 nm