Bandpass Interference Filters

- Precise control of center wavelength and bandpass shape
- Wide selection of stock wavelengths from $250 \mathrm{~nm}-1550 \mathrm{~nm}$
- Selection of bandwidths
- Available in $1 / 2 "$ and 1 " sizes
- High peak transmission values

- Excellent blocking from UV to IR

- Sealed design provides

 long term stabilityEssentially a stack of Fabry-Perot cavities, these filters select the transmitted spectrum by constructive and destructive interference at the boundaries between high and low index dielectric layers. Several cavities may be combined to produce a sharper cut-off and to alter the shape of the passband. Two three and four cavity designs are commonly used in these filters according to the specifications required. Absorbing and reflecting layers are also included in the stack to block the transmission of unwanted wavelengths over a wide spectrum from near UV to far IR. When selecting a filter always be certain to consider the spectral characteristics of the source and detector in use. These should be combined with the filter curve to obtain the resulting spectral response of the system.

Two Cavity All-Dielectric Filter

2 Cavity Filter

3 Cavity Filter

4 Cavity Filter
For Filters with FWHM of 2.5 to 5.0% of CWL

Bandpass interference filters are available for a wide range of center wavelengths (CWL) and bandwidths, specified as the "full width at half maximum" (FWHM). Narrower bandwidths naturally cause a lower transmission, but Ealing filters are designed to have the maximum possible peak transmission for a given pass band. These filters are intended for use in approximately collimated light at normal incidence. If tilted or used in a strongly convergent or divergent beam, the peak transmission will be shifted to a shorter wavelength. The amount of this shift is dependent on the "effective index" of the filter (n^{*}) in accordance with the following formula and table:

Keep in mind, while the formula and table can be a reasonable estimate for the wavelength shift, the actual "effective index" varies from filter to filter and should be considered during calculations.

Temperature changes will affect the performance of interference filters due to thermal expansion of the thin film and substrate materials. Filters are designed and specified for use at $23^{\circ} \mathrm{C}$. They work well over a range of -60 to $+60^{\circ} \mathrm{C}$, but an approximately linear shift of peak wavelength occurs. In the visible range the expected shift of wavelength is approximately $0.025 \mathrm{~nm} /{ }^{\circ} \mathrm{C}$. Bandwidth and peak transmission vary much more slowly with temperature $\left(0.001 \mathrm{~nm} /{ }^{\circ} \mathrm{C}\right.$ and $0.13 \% /$ ${ }^{\circ} \mathrm{C}$ respectively) and these second order effects can usually be ignored. Exposure to, or storage at, temperatures outside the operating range could result in a permanent change of the filter's performance. Thermal shock can cause interference filters to shatter or delaminate.
Ealing offers three series of bandpass filters for UV, VIS, and IR ranges. The UV filters use synthetic fused silica substrates, whereas the VIS and IR filters use glass substrates. Specifications are different for each range of products. Measured spectrophotometer traces are supplied with each filter.
We will be pleased to discuss your specific requirements for filters not listed in this catalog, and to quote for your volume OEM requirements.

Common UV, VIS and IR Bandpass Filter Specifications
Available sizes:

$1 / 2 "$	$12.7+0 /-0.25 \mathrm{~mm}$ diameter
$1 "$	$25.4+0 /-0.25 \mathrm{~mm}$ diameter
Minimum clear aperture:	8.7 mm
$1 / 2 "$	21.4 mm
$1 "$	6.4 mm
Maximum thickness:	Hermetically sealed in black anodized aluminum ring
Edge treatment:	Per Mil-STD-810E
	$23^{\circ} \mathrm{C}$
Humidity resistance:	$-50^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Optimum temp:	$\mathrm{Optical}^{\prime \prime}$
Temperality glass	
Substrate material:	$80 / 50$ per Mil-O-13830A
Surface quality:	Spectrophotometric print of
Certification:	manufacturing lot sample

Attenuation Specifications

UV Bandpass Filters
Out-of-Band Attenuation:
For FWHM $\leq 13 \mathrm{~nm}$: Minimum/ Minimum Average Attenuation OD 3/ OD 4 from 200 nm to 3500 nm

VIS and IR Bandpass Filters
Out-of-Band Attenuation:
For FWHM $\leq 10 \mathrm{~nm}$: Minimum/ Minimum Average Attenuation OD 4/ OD 5 from 200 nm to 3500 nm
For FWHM $\geq 40 \mathrm{~nm}$: Minimum/ Minimum Average Attenuation OD 3/ OD 4 from 200 nm to 1200 nm

Narrow Bandpass Filters

Center Wavelength (nm)	Bandwidth FWHM (nm)	MinimumPeakTransmission	Element or Application	12.7mm(1/2")Diameter		$25.4 \mathrm{~mm}\left(1^{1 \prime}\right)$ Diameter	
				Catalog Number	Price US	Catalog Number	Price US
$488.0+0.2 /-0$	1 ± 0.2	35\%	Ar	42-5175	\$147.00	35-8366	\$225.00
$488.0+1.0 /-0$	3 ± 0.5	35\%	Ar	42-5178	\$99.00	35-8389	\$147.00
$514.5+0.2 /-0$	1 ± 0.2	35\%	Ar	42-5233	\$147.00	35-8424	\$225.00
$514.5+1.0 /-0$	3 ± 0.5	40\%	Ar	42-5236	\$99.00	35-8427	\$147.00
$532.0+0.2 /-0$	1 ± 0.2	35\%	Nd	42-5266	\$147.00	35-8465	\$225.00
$532.0+1.0 /-0$	3 ± 0.5	40\%	Nd	42-5269	\$99.00	35-8668	\$147.00
$546.1+0.2 /-0$	1 ± 0.2	35\%	Hg	42-5283	\$147.00	35-3667	\$225.00
$546.1+1.0 /-0$	3 ± 0.5	40\%	Hg	42-5286	\$99.00	35-3670	\$147.00
$577.0+1.0 /-0$	3 ± 0.5	40\%	Hg	42-5333	\$99.00	35-3751	\$147.00
$632.8+0.2 /-0$	1 ± 0.2	35\%	HeNe	42-4895	\$147.00	42-4937	\$225.00
$632.8+1.0 /-0$	3 ± 0.5	40\%	HeNe	42-4898	\$99.00	42-4940	\$147.00
$656.3+0.2 /-0$	1 ± 0.2	35\%	H-Alpha	42-5499	\$147.00	35-3990	\$225.00
$656.3+1.0 /-0$	3 ± 0.5	40\%	H-Alpha	42-5502	\$99.00	35-3993	\$147.00
$694.3+0.2 /-0$	1 ± 0.2	35\%	Ruby	42-5564	\$147.00	35-4103	\$225.00
$694.3+1.0 /-0$	3 ± 0.5	40\%	Ruby	42-5567	\$99.00	35-4106	\$147.00
$1064.0+1.0 /-0$	3 ± 0.5	35\%	Nd	42-5921	\$147.00	35-4947	\$195.00

UV Bandpass Filters

Center Wavelength (nm)	Bandwidth FWHM (nm)	MinimumPeakTransmission	Element or Application	12.7mm(1/2")Diameter		$25.4 \mathrm{~mm}\left(1^{\prime \prime}\right)$ Diameter	
				Catalog Number	Price US	Catalog Number	Price US
334.1 ± 2.0	10 ± 2	25\%	Hg, Ti			35-7965	\$228.00
337.1 ± 2.0	10 ± 2	25\%	N			35-7968	\$228.00
340.0 ± 2.0	10 ± 2	25\%	BioMed			35-2989	\$168.00
365.0 ± 2.0	10 ± 2	25\%	Hg			35-3045	\$168.00

Visible Bandpass Filters

Center Wavelength (nm)	Bandwidth FWHM (nm)	MinimumPeakTransmission	Element or Application	$12.7 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ Diameter		25.4mm(1") Diameter		Lenses
				Catalog Number	Price US	Catalog Number	Price US	
390.0 ± 2.0	10 ± 2	30\%	Sc	42-5035	\$42.00	35-3089	\$92.00	Mirrors \& Beamsplitters
394.0 ± 2.0	10 ± 2	30\%	S	42-5038	\$42.00	35-3092	\$92.00	
400.0 ± 2.0	10 ± 2	40\%	Dy, Yb	42-5041	\$42.00	35-3201	\$92.00	
400.0 ± 8.0	40 ± 8	40\%		42-5044	\$42.00	35-3204	\$92.00	
$404.7+3.0 /-1.0$	10 ± 2	40\%	Hg, BioMed	42-5058	\$42.00	35-3227	\$92.00	Prisms \& Polarizers
410.0 ± 2.0	10 ± 2	40\%	Ni, H-Delta	42-5066	\$42.00	35-3243	\$92.00	
420.0 ± 2.0	10 ± 2	40\%	Eu, Ar	42-5082	\$42.00	35-3284	\$92.00	
430.0 ± 2.0	10 ± 2	40\%	Ar, Sm, W	42-5090	\$42.00	35-3300	\$92.00	Filters
$435.8+3.0 /-1.0$	10 ± 2	40\%	Hg , BioMed	42-5108	\$42.00	35-3326	\$92.00	
440.0 ± 2.0	10 ± 2	40\%		42-5116	\$42.00	35-3342	\$92.00	
$441.6+3.0 /-1.0$	10 ± 2	40\%	HeCd	42-5119	\$42.00	35-3345	\$92.00	Pinholes
450.0 ± 2.0	10 ± 2	40\%	$\mathrm{He}, \mathrm{Ni}, \mathrm{BioM}$	42-5124	\$42.00	35-3367	\$92.00	
450.0 ± 8.0	40 ± 8	60\%		42-5132	\$42.00	35-5024	\$92.00	
$457.9+3.0 /-1.0$	10 ± 2	40\%	Ar	42-5140	\$42.00	35-3383	\$92.00	
460.0 ± 2.0	10 ± 2	40\%	Eu, Sr	42-5157	\$42.00	35-3409	\$92.00	
467.0 ± 2.0	10 ± 2	45\%	Xe	42-6965	\$42.00	42-7294	\$92.00	
470.0 ± 2.0	10 ± 2	45\%	Cd, Br	42-5165	\$42.00	35-3425	\$92.00	
476.0 ± 2.0	10 ± 2	45\%		42-5168	\$42.00	35-3428	\$92.00	Optomechanics
480.0 ± 2.0	10 ± 2	45\%	Cd	42-5173	\$42.00	35-3441	\$92.00	
$486.1+3.0 /-1.0$	10 ± 2	45\%	Zn, H-Beta	42-5177	\$42.00	35-3444	\$92.00	
$488.0+3.0 /-1.0$	10 ± 2	45\%	Ar	42-5181	\$42.00	35-3466	\$92.00	Breadboards \& Rails
490.0 ± 2.0	10 ± 2	45\%	He, BioMed	42-5199	\$42.00	35-3482	\$92.00	
500.0 ± 2.0	10 ± 2	45\%		42-5207	\$42.00	35-3508	\$92.00	
500.0 ± 8.0	40 ± 8	65\%		42-5215	\$42.00	35-5040	\$92.00	Mounting Hardware
500.0 ± 8.0	70 ± 8	65\%		42-6999	\$42.00	42-7302	\$92.00	
505.0 ± 2.0	10 ± 2	45\%		42-7002	\$42.00	35-3537	\$92.00	
510.0 ± 2.0	10 ± 2	45\%	Cd, Cu	42-5223	\$42.00	35-3540	\$92.00	$\begin{aligned} & \text { Mirror \& } \\ & \text { Component } \\ & \text { Mounts } \end{aligned}$
$514.5+3.0 /-1.0$	10 ± 2	45\%	Ar	42-5231	\$42.00	35-3565	\$92.00	
520.0 ± 2.0	10 ± 2	45\%	Ba, Mg	42-5249	\$42.00	35-3581	\$92.00	
530.0 ± 2.0	10 ± 2	45\%		42-5256	\$42.00	35-3607	\$92.00	ManualMicro Positioners
$532.0+3.0 /-1.0$	10 ± 2	45\%	Nd	42-5264	\$42.00	35-3623	\$92.00	
540.0 ± 2.0	10 ± 2	50\%	$\mathrm{Ne}, \mathrm{BioMed}$	42-5272	\$42.00	35-3649	\$92.00	
$543.5+3.0 /-1.0$	10 ± 2	50\%		42-5275	\$42.00	35-3652	\$92.00	
$546.1+3.0,-1.0$	10 ± 2	50\%	Hg	42-5280	\$42.00	35-3664	\$92.00	Motorized Positioners
550.0 ± 2.0	10 ± 2	50\%		42-5298	\$42.00	35-3680	\$92.00	
550.0 ± 8.0	40 ± 8	65\%		42-5306	\$42.00	35-5065	\$92.00	
550.0 ± 8.0	70 ± 8	75\%		42-7039	\$42.00	42-7310	\$92.00	
560.0 ± 2.0	10 ± 2	50\%		42-5314	\$42.00	35-3706	\$92.00	
568.2 ± 2.0	10 ± 2	50\%		42-7047	\$42.00	42-7328	\$92.00	
570.0 ± 2.0	10 ± 2	50\%	Na	42-5322	\$42.00	35-3722	\$92.00	
$577.0+3.0 /-1.0$	10 ± 2	50\%	Hg	42-5330	\$42.00	35-3748	\$92.00	
580.0 ± 2.0	10 ± 2	50\%	Hg	42-5348	\$42.00	35-3763	\$92.00	
$589.3+3.0 /-1.0$	10 ± 2	50\%	Na	42-5355	\$42.00	35-3789	\$92.00	
590.0 ± 2.0	10 ± 2	50\%	BioMed	42-5363	\$42.00	35-3805	\$92.00	
600.0 ± 2.0	10 ± 2	50\%	BioMed	42-5371	\$42.00	35-3821	\$92.00	
600.0 ± 8.0	40 ± 8	65\%		42-5389	\$42.00	35-5081	\$92.00	
600.0 ± 8.0	65 ± 8	75\%		42-7062	\$42.00	42-7366	\$92.00	
610.0 ± 2.0	10 ± 2	50\%	Ne	42-5397	\$42.00	35-3847	\$92.00	
620.0 ± 2.0	10 ± 2	50\%	Ca	42-5405	\$42.00	35-3862	\$92.00	
630.0 ± 2.0	10 ± 2	50\%	0	42-5413	\$42.00	35-3888	\$92.00	
$632.8+3.0 /-1.0$	10 ± 2	50\%	HeNe	42-5421	\$42.00	35-3904	\$92.00	
$632.8+3.0 /-1.0$	10 ± 2	75\%	HeNe	42-5439	\$42.00	35-4126	\$92.00	
632.8 ± 8.0	40 ± 8	75\%	HeNe	42-5447	\$42.00	42-7344	\$92.00	
636.0 ± 2.0	10 ± 2	50\%		42-7088	\$42.00	42-7351	\$92.00	

Optics Lenses	Visible Bandpass Filters (continued)							
	Center Wavelength (nm)	Bandwidth FWHM (nm)	$\begin{aligned} & \text { Minimum } \\ & \text { Peak } \\ & \text { Transmission } \end{aligned}$	Element or Application	12.7mm(1/2")Diameter		$25.4 \mathrm{~mm}\left(1^{11}\right)$ Diameter	
					Catalog Number	Price US	Catalog Number	Price US
$\begin{aligned} & \text { Mirrors \& } \\ & \text { Beamspliters } \end{aligned}$	640.0 ± 2.0	10 ± 2	50\%	Ne	42-5454	\$42.00	35-3920	\$92.00
	$647.1+3.0 /-1.0$	10 ± 2	50\%	Kr	42-5462	\$42.00	35-3946	\$92.00
	650.0 ± 2.0	10 ± 2	50\%	Ca, BioMed	42-5470	\$42.00	35-3961	\$92.00
	650.0 ± 8.0	40 ± 8	65\%		42-5488	\$42.00	35-5107	\$92.00
 Polarizers	$656.3+3.0 /-1.0$	10 ± 2	50\%	H-Alpha	42-5496	\$42.00	35-3987	\$92.00
	660.0 ± 2.0	10 ± 2	50\%		42-5504	\$42.00	35-4001	\$92.00
	660.0 ± 8.0	40 ± 2	75\%		42-7120	\$42.00	42-7377	\$92.00
Filters	670.0 ± 2.0	10 ± 2	50\%	Diode	42-5512	\$42.00	35-4027	\$92.00
	670.0 ± 2.0	10 ± 2	75\%	Diode	42-5520	\$42.00	42-7385	\$92.00
	670.0 ± 8.0	40 ± 8	75\%	Diode	42-5538	\$42.00	42-7393	\$92.00
Pinholes	675.0 ± 2.0	10 ± 2	50\%	Diode	42-5541	\$42.00	35-4065	\$92.00
	680.0 ± 2.0	10 ± 2	50\%		42-5546	\$42.00	35-4068	\$92.00
	685.0 ± 2.0	10 ± 2	50\%		42-5549	\$42.00	35-4071	\$92.00
$\begin{gathered} \text { Opto- } \\ \text { mechanics } \end{gathered}$	690.0 ± 2.0	10 ± 2	50\%	Hg, O	42-5553	\$42.00	35-4084	\$92.00
	$694.3+3.0 /-1.0$	10 ± 2	50\%	Ruby	42-5561	\$42.00	35-4100	\$92.00
	700.0 ± 2.0	10 ± 2	50\%		42-5579	\$42.00	35-4167	\$92.00
	700.0 ± 8.0	40 ± 8	65\%		42-5587	\$42.00	35-5123	\$92.00
	710.0 ± 2.0	10 ± 2	50\%		42-5595	\$42.00	42-7419	\$92.00
	720.0 ± 2.0	10 ± 2	50\%		42-5603	\$42.00	35-4209	\$92.00
	730.0 ± 2.0	10 ± 2	50\%	Diode	42-5611	\$42.00	35-4225	\$92.00
$\underset{\text { \& Rails }}{\text { Breadboards }}$	730.0 ± 2.0	30 ± 8	75\%	Diode	42-5629	\$42.00	35-6345	\$92.00
	740.0 ± 2.0	10 ± 2	50\%		42-5637	\$42.00	35-4241	\$92.00
	750.0 ± 2.0	10 ± 2	50\%	Alexandrite	42-5645	\$42.00	35-4266	\$92.00
MountingHardware	760.0 ± 2.0	10 ± 2	45\%	0	42-5660	\$42.00	35-4282	\$92.00
	$766.5+3.0 /-1.0$	10 ± 2	45\%	K	42-5663	\$42.00	35-7285	\$92.00
	770.0 ± 2.0	10 ± 2	45\%		42-5678	\$42.00	35-4324	\$92.00
$\underset{\substack{\text { Mirror \& } \\ \text { Component }}}{\text { Monts }}$ Mounts	$780.0+3.0 /-1.0$	10 ± 2	45\%	Rb, Diode	42-5686	\$42.00	35-4340	\$92.00
	780.0 ± 8.0	30 ± 8	75\%	Rb, Diode	42-5694	\$42.00	35-5537	\$92.00

IR Bandpass Filters

Center	Bandwidth	Minimum	Element	12.7mm(1/2")Diameter		$25.4 \mathrm{~mm}\left(1^{\prime \prime}\right)$ Diameter	
Wavelength (nm)	FWHM (nm)	Peak Transmission	or Application	Catalog Number	Price US	Catalog Number	$\begin{gathered} \text { Price } \\ \text { US } \end{gathered}$
640.0 ± 2.0	10 ± 2	50\%	Ne	42-5454	\$42.00	35-3920	\$92.00
790.0 ± 2.0	10 ± 2	45\%		42-5702	\$50.00	35-4365	\$121.00
800.0 ± 2.0	10 ± 2	45\%	Ar	42-5710	\$50.00	35-4381	\$121.00
800.0 ± 8.0	65 ± 8	75\%	Ar	42-7195	\$50.00	42-7435	\$121.00
810.0 ± 2.0	10 ± 2	45\%	Diode	42-5728	\$50.00	35-4407	\$121.00
820.0 ± 2.0	10 ± 2	45\%		42-5736	\$50.00	35-4423	\$121.00
830.0 ± 2.0	10 ± 2	45\%	Diode	42-5744	\$50.00	35-4449	\$121.00
830.0 ± 8.0	40 ± 8	75\%	Diode	42-5751	\$50.00	35-4452	\$121.00
840.0 ± 2.0	10 ± 2	45\%		42-5769	\$50.00	35-4464	\$121.00
850.0 ± 2.0	10 ± 2	45\%	Hg, Diode	42-5777	\$50.00	35-4480	\$121.00
850 ± 8.0	70 ± 8	65\%		42-7229	\$50.00	42-7443	\$121.00
855 ± 8.0	40 ± 8	75\%		42-5785	\$50.00	35-2583	\$121.00
870.0 ± 2.0	10 ± 2	45\%	Diode	42-5793	\$50.00	35-4522	\$121.00
880.0 ± 2.0	10 ± 2	45\%	Diode	42-5801	\$50.00	35-4548	\$121.00
880.0 ± 8.0	40 ± 8	65\%		42-5819	\$50.00	35-4969	\$121.00
900.0 ± 2.0	10 ± 2	45\%		42-5835	\$50.00	35-4589	\$121.00
905.0 ± 2.0	10 ± 2	45\%	Diode	42-7260	\$50.00	42-7476	\$121.00
905.0 ± 8.0	50 ± 8	75\%	Diode	42-5843	\$50.00	35-4985	\$121.00
920.0 ± 2.0	10 ± 2	45\%		42-5847	\$50.00	35-4988	\$121.00
920.0 ± 2.0	10 ± 2	45\%		42-5847	\$60.00	35-4988	\$121.00
940.0 ± 2.0	10 ± 2	45\%	Diode	42-5868	\$60.00	35-4688	\$121.00
950.0 ± 2.0	10 ± 2	45\%	Diode	42-5884	\$60.00	35-4704	\$121.00
950 ± 8.0	70 ± 8	65\%		42-7278	\$60.00	42-7484	\$121.00
970.0 ± 2.0	10 ± 2	45\%		42-7281	\$60.00	42-7487	\$121.00
1000.0 ± 2.0	10 ± 2	45\%		42-5892	\$60.00	42-7492	\$121.00
1050.0 ± 2.0	10 ± 2	45\%		42-5900	\$60.00	42-7500	\$121.00
$1064.0+3.0 /-0$	10 ± 2	40\%	Nd	42-5918	\$60.00	35-4944	\$121.00
1100.0 ± 2.0	10 ± 2	40\%		42-5934	\$60.00	42-6254	\$121.00
1150.0 ± 2.0	10 ± 2	40\%		42-5937	\$60.00	42-6257	\$121.00
1200.0 ± 2.0	10 ± 2	40\%		42-5983	\$60.00	42-6304	\$121.00
1250.0 ± 2.0	10 ± 2	40\%		42-5986	\$60.00	42-6307	\$121.00
1300.0 ± 2.0	12 ± 2	35\%	Diode	42-6031	\$60.00	42-6353	\$121.00
1350.0 ± 2.0	12 ± 2	35\%	Diode	42-6034	\$60.00	42-6356	\$121.00
1400.0 ± 2.0	12 ± 2	35\%	Diode	42-6080	\$60.00	42-6403	\$121.00
1450.0 ± 2.0	12 ± 2	35\%		42-6083	\$60.00	42-6406	\$121.00
1500.0 ± 2.0	12 ± 2	35\%	Diode	42-6130	\$60.00	42-6452	\$121.00
1550.0 ± 2.0	12 ± 2	35\%	Diode	42-6133	\$60.00	42-6455	\$121.00

Optics

Lenses

Mirrors \&
Beamsplitter Beamsplitters

Prisms \&
Polarizers

Filters

Pinholes

Opto-
mechanics
Breadboards
\& Rails
Mounting
Hardware
Component
Mounts
Manual
Micro
Positioners
Motorized
Positioners

