12/13/2020 BBO | Gamdan Optics

BBO (BETA-BARIUM BORATE)

GET A
QUOTE

(SHG) of Visible and Near IR laser light, OPO/OPG/OPA pumped by ultrafast pulses of wavelengths in the Near IR to UV, and sum-frequency mixing (SFM) into the Visible to the deep UV. BBO is one of the few practical crystal for use below 500 nm in SHG and SFM.

BBO (beta-BaB2O4) is an excellent non-linear crystal for frequency-doubling

BBO crystal has broad tunability, high damage threshold, and high efficiency. BBO's small acceptance angle requires a very good beam quality and its large walkoff results in output beams that are very elliptical or slit-like. Type I is usually much more efficient than type II operation. BBO can not be used for NCPM (temperature tuned) application. BBO is very good for tunable laser sources, such as ultrafast Ti:Sapphire or dye lasers.

BBO is also widely used for SHG, 3HG, 4HG, and autocorrelation of femtosecond and picosecond Ti:Sapphire lasers; SHG, 3HG, 4HG, 5HG of YAG lasers at 1064 nm and 1320 nm to yield output of 212–660nm; SHG of tunable dye or solid-state laser sources from 410–750 nm to yield output of 205–375 nm, SFM of dye laser and YAG harmonics to yield output of 189–400 nm; DFM (difference-frequency mixing) from the Visible to the IR range up to over 3000 nm; OPO pumped with SHG or 3HG of YAG or Ti:Sapphire with an output range of 400–3000; Intracavity SHG of Argon ion lasers (488, 514 nm) or Copper vapor lasers (510 nm, 578 nm).

PRODUCTS:

- LBO
- KTP
- BBO
- Nd:YVO4

Crystal Structural and Physical Properties

Crystal Structure	Trigonal, space group R _{3c}
Cell Parameters	$a = b = 12.532\tilde{A}, c = 12.717\tilde{A}, Z = 6$
Melting point	1095 <u>+</u> 5°C
Transition temperature	925 <u>+</u> 5°C
Optical homogeneity	$d n \sim 10^{-6}/cm$
Mohs hardness	4
Density	3.85 g/cm ³
Absorption Coefficient	< 0.1%/cm (at 1064nm)
Specific heat	490 J/kg/°C
Hygroscopic susceptibility	low
Thermal expansion coefficients	a, 4 x 10 ⁻⁶ /K; c, 36 x 10 ⁻⁶ /K
Thermal conductivity	Perpendicular to c, 1.2 W/m/°C Parallel to c, 1.6 W/m/°C

https://www.gamdan.com/bbo

Linear Optical Properties

Transparency range	189-3500 nm
Refractive indices:	$n_e = 1.5425$, $n_o = 1.6551$ @ 1064 nm
	$n_e = 1.5555$, $n_o = 1.6749 @ 532 nm$
	$n_e = 1.6146$, $n_o = 1.7571$ @ 266 nm
Therm-optic coefficients	$dn_o/dT = -9.3 \times 10^{-6}/^{\circ}C$
	$dn_e/dT = -16.6 \times 10^{-6}/^{\circ}C$

Sellmeier Equations (I in mm)

```
n_0^2 (l) = 2.7359 - 0.01354l<sup>2</sup>+ 0.01878/(l<sup>2</sup>-0.01822)

ne^2(l) = 2.3753 - 0.01516l<sup>2</sup>+ 0.01224/(l<sup>2</sup>-0.01667)
```

Nonlinear Optical Properties

Phase-matchable output wavelength	189 - 1750 nm
NLO coefficients	$d11 = 5.8 \times d_{36}$ (KDP)
	$d_{31} = 0.05 \times d_{11}$
	$d_{22} < 0.05 \times d_{11}$
Electro-optic coefficients	$y_{11} = 2.7 \text{ pm/V}$
Half-wave voltage	48 KV (at 1064 nm)
Damage threshold	5 GW/cm2 (10 ns) @1064nm 10 GW/cm2 (1.3 ns) @ 1064 nm
	1 GW/cm2 (10 ns) @532 nm 7 GW/cm2 (250 ps) @ 532 nm

BBO Typical Specifications

```
Thin crystals: (5-10) \times (5-10) \times (0.1 - 1) \text{ mm}^3
Regular sizes: 4 \times 4 \text{ mm}^2 to 20 \times 20 \text{ mm}^2 in diameter, 3 - 30 \text{ mm} in length
```

Different cuts, sizes and AR coatings are available upon request.

BBO is hygroscopic. In application, protective coating or AR coating or crystal housing is usually recommended. Data-sheet available for download in PDF:

DOWNLOAD PDF

https://www.gamdan.com/bbo

https://www.gamdan.com/bbo 3/3