

For the most demanding applications, ALPAO can provide a state-of-the-art **Real Time Computer** (ALPAO *RTC*), a CPU linux based Real Time Computer (RTC) running up to **5kHz** with RTC latency lower than **150µs**.

Key features

SPEED

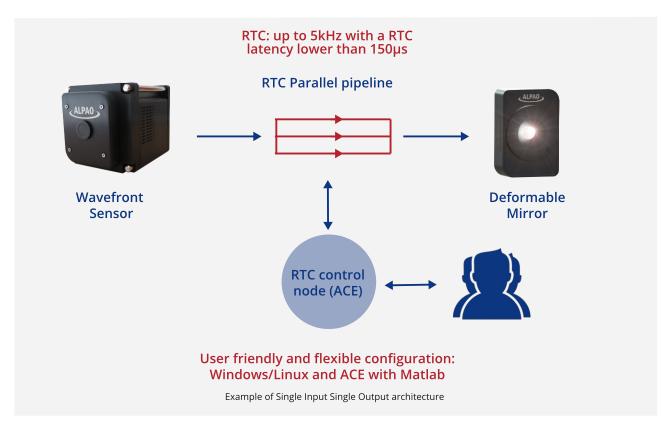
Up to 5kHz

LOW LATENCY AND JITTER

RTC latency as low as 150µs

FLEXIBILITY

User-friendly and flexible RTC control node


ALPAO RTC UNIQUE ARCHITECTURE

The RTC pipeline is specially optimized for high speed AO loop. To obtain such performances, it is hardware dependent and closed source.

The RTC control node is based on the ACE toolbox, already powering more than 100 adaptive optics systems worldwide. The ACE layer is based on the standard Matlab® environment, which allows high flexibility.

The following functionalities are provided in ACE:

- Step-by-step operation of the RTC pipeline
- Non-intrusive monitoring of all data steams
- Configuration of each worker process such as integration time, CCD gain, CCD readout mode, CCD dark and flat images for gain/offset compensation, threshold level, target centroids, partial command matrix, integrator gain, and deformable mirror offsets.
- Script-based generation of all calibration data such as reference centroids, influence matrix, dark and flat images.

RTC is provided with the specific hardware already plugged in the bay $(1000 \times 600 \times 1160 \text{mm}, \sim 150 \text{kg}, \text{ up to } 4 \text{kW})$ via a standard socket), which includes:

- The supervisor for the control node (19" x 1U x 400mm).
- The Linux multi CPU server for the fast pipeline (19" x 2U x ~900mm).

RTC OPTIONS

ALPAO RTC can be easily customized to fit your application:

- Different architectures: Single Input Single Output, Single Input Multiple Output and Multi Input Multi Output.
- Enhanced telemetry capability: large capacity storage device.
- Faster command matrix update: if your command matrix need to be refreshed at a rate above 1Hz.
- 8 channel control card: +/-10 V control on 14 bit allowing for example separate tit-tilt mirror control.
- Hardware integration, specific algorithm integration, pyramidal WFS...

More options available: contact us.

2021a 3/4

31x31

KIT PERFORMANCES

Choose the correct **ALPAO** kit depending on your application:

• the shape of your aberrations drives the number of actuators,

WFS sub-aperture ROI

• the temporal fluctuations of your aberrations and the number of photons available drive the WFS and RTC choice.

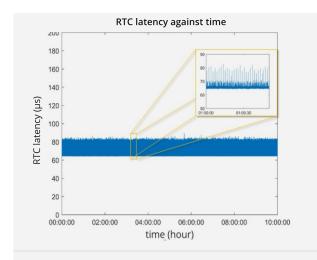
15x15

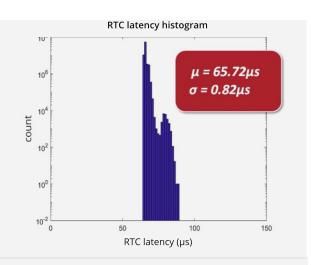
10x10

8x8

Compatible DM (Fried geometry,						
SH-CMOS fast	Frame rate RTC/Total latency Rejection bandwith					
SH-EMCCD	Frame rate RTC/Total latency Rejection bandwith					
SH-EMCCD fast	Frame rate RTC/Total latency Rejection bandwith					
SH-InGaAs fast	Frame rate RTC/Total latency Rejection bandwith					

DM69	DM97	DM192	DM241	DM292	DM468	DM820
5000Hz	5000Hz	5000Hz	5000Hz	5000Hz	5000Hz	3000Hz
27/82µs	27/91µs	30/132µs	32/140µs	33/172µs	41/227µs	61/343µs
350Hz	335Hz	280Hz	270Hz	240Hz	200Hz	130Hz
1830Hz 27/590µs 85Hz	1004Hz 27/1040µs 50Hz	1004Hz 30/1049µs 50Hz	1004Hz 32/1058µs 50Hz	n/a	n/a	n/a
2067Hz	2067Hz	2067Hz	2067Hz	2067Hz	2067Hz	n/a
27/527µs	27/528µs	30/537µs	32/545µs	33/553µs	41/580µs	
95Hz	95Hz	95Hz	95Hz	95Hz	90Hz	
5000Hz	5000Hz	5000Hz	4760Hz	3830Hz	3020Hz	n/a
27/244µs	27/244µs	30/253µs	32/272µs	33/330µs	41/428µs	
215Hz	215Hz	210Hz	195Hz	160Hz	125Hz	

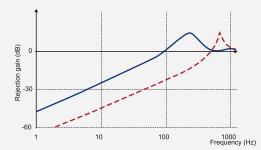

16x16


19x19

23x23

TIMING PERFORMANCES

Lost frame and jitter could have a large impact on the overall loop performances and stability. In the following example, there was zero lost frame over 10 hours while working at 2 kHz. RTC latency was very stable as shown on the following histogramm.

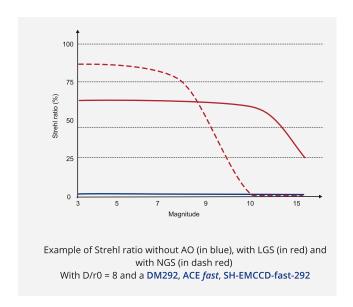


ALPAO high speed kit (DM97-15, SH-CMOS-fast and ALPAO RTC) featuring a rejection bandwith of 230 Hz.

Ask for advanced simulations!

Bode diagram example using a SH-EMCCD-fast (in blue) and SH-CMOS-fast (in dash red) with ALPAO RTC and a DM292.

STATE-OF-THE-ART SYSTEM FOR LGS ATMOSPHERIC COMPENSATION


ALPAO can provide state-of-the-art AO systems for atmospheric turbulence compensation. Natural Guide Star (NGS) or Laser Guide Star (LGS) configuration can be provided.

Such systems typically include:

- ALPAO DM
- ALPAO fast WFS
- ALPAO RTC
- a calibration unit
- a Tip-Tilt Mirror (TTM)
- an object Tip-Tilt sensor
- a Focus Stage Control (FCS) for the LGS
- a LGS-TT
- a science camera or instrument
- a storage device

Typical applications are:

- Astronomy
- Debris and satellite imaging
- Free Space Optical (FSO) communication
- Laser precompensation of atmospheric aberrations

ORDER TODAY

