Datasheet 10 Gbps 980nm VCSEL

DESCRIPTION

Inneos' 980nm 10 Gbps VCSEL was designed for extended temperature operating environments from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ to meet the needs of automotive and industrial applications, where low operating currents and extended lifetimes are critical parameters. The device allows for wirebond assemblies to support a variety of packaging options. The Inneos 980 nm VCSEL maintains superior performance in wide range of operating environments.

FEATURES

- Operating temperature from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Top-emitting
- Single channel

APPLICATIONS

- Wide-Temperature Transceivers

ORDERING INFORMATION

PART NUMBER

V980-10GXA-1TGA

- Transmitter Optical Sub-Assemblies

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Storage Temperature Range	T_{S}	-65	135	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{o}	-40	125	${ }^{\circ} \mathrm{C}$
Reverse Voltage	V_{R}		8	V
Continuous Forward Current	I_{F}		10	mA
ESD Protection (HBM)			200	V

Datasheet
 10 Gbps 980nm VCSEL

OPTICAL/ELECTRICAL SPECIFICATIONS

PARAMETER	CONDITIONS	SYMBOL	UNITS	MIN	TYPICAL	MAX
Emission Wavelength	$\mathrm{T}_{0}=30^{\circ} \mathrm{C} @ 3 \mathrm{~mA}$	λ_{c}	nm	965	-	990
Variation of Wavelength with Temperature	-	$\frac{\Delta \lambda}{\Delta T}$	$n \mathrm{~m} /{ }^{\circ} \mathrm{C}$	-	0.06	0.07
Spectral Width ${ }^{\text {a }}$	$\mathrm{T}_{0}=30^{\circ} \mathrm{C}$ @ 3 mA	σ_{λ}	nm	-	0.4	-
Threshold Current ${ }^{\text {b }}$	$\mathrm{T}_{0}=-40^{\circ} \mathrm{C}$	$I_{\text {th }}$	$m A$	-	0.5	0.7
	$\mathrm{T}_{0}=30^{\circ} \mathrm{C}$			-	0.7	-
	$\mathrm{T}_{0}=125^{\circ} \mathrm{C}$			-	1.6	2.0
Average Operating Current	$\mathrm{T}_{\mathrm{o}}=30^{\circ} \mathrm{C}$	$I_{\text {avg }}$	$m A$	-	3	-
Operating Voltage	$\mathrm{T}_{\mathrm{o}}=-40^{\circ} \mathrm{C} @ \mathrm{P}_{0}=1 \mathrm{~mW}$	V_{o}	V	-	-	3.15
	$\mathrm{T}_{0}=125^{\circ} \mathrm{C}$ @ $\mathrm{P}_{0}=1 \mathrm{~mW}$			-	-	2.0
Optical Output Power	$\begin{gathered} \mathrm{T}_{\mathrm{o}}=-40^{\circ} \mathrm{C} @ 2.2 \mathrm{~mA}, \\ 125^{\circ} \mathrm{C} @ 4.3 \mathrm{~mA} \end{gathered}$	P_{o}	$m W$	1.0	-	-
	$\mathrm{T}_{\mathrm{o}}=30^{\circ} \mathrm{C}$, @ 3mA			-	1.6	-
Small Signal Bandwidth ${ }^{\text {c }}$	$\mathrm{T}_{0}=30^{\circ} \mathrm{C} @ 3 \mathrm{~mA}$	$f_{3 d B}$	GHz	7.75	-	-
Beam Divergence Half Angle (1/e $\left.{ }^{2}\right)^{d}$	$\mathrm{T}_{\mathrm{o}}=30^{\circ} \mathrm{C} @ 3 \mathrm{~mA}$	$\theta_{1 / 2}$	deg	-	16	-
Slope Efficiency ${ }^{\text {e }}$	$\mathrm{T}_{0}=-40^{\circ} \mathrm{C}$	$S E$	$m W / m A$	-	0.75	-
	$\mathrm{T}_{0}=125^{\circ} \mathrm{C}$			-	0.5	-
Differential Resistance ${ }^{\text {f }}$	$\mathrm{T}_{\mathrm{o}}=125^{\circ} \mathrm{C} @ 6 \mathrm{~mA}$	$R_{\text {diff }}$	Ω	-	89	-

MECHANICAL OUTLINE

Dimensions are in microns.

PARAMETER CALCULATION METHODS USED

a. Spectral width is calculated based on FOTP-127 where the spectral level of the measured spectra below 20dB from maximum value are made zero and RMS spectral width is calculated based on formula

$$
\Delta \lambda_{R M S}=\sqrt{\frac{\sum_{i=1}^{N} P_{i} \lambda_{i}^{2}}{\sum_{i=1}^{N} P_{i}}}-\left(\frac{\sum_{i=1}^{N} P_{i} \lambda_{i}}{\sum_{i=1}^{N} P_{i}}\right)^{2}
$$

where ' λ_{i} ' is the wavelength and ' P_{i}^{\prime} ' is the optical power level of the $i_{\text {th }}$ point in the spectra.
b. The threshold current is derived by a linear fit method using 10% and 20% of peak optical power points. Threshold current is the point at which the optical power is zero using the linear fit.
c. The small signal bandwidth is obtained from optical response measurements at set current and reading the cut off frequency at which the power level is 3 dB down from the power level at DC.
d. Beam divergence half-angle is derived from measurement of optical power in far-field at various angles. The half-angle is the angular deviation from center where the power reduces by ' $1 / \mathrm{e}^{\prime}$ '.
e. The slope efficiency is derived by linear fit method using 10% and 20% of peak optical power points. Slope efficiency is the slope of the lineal fit of optical power and drive current.
f. Differential resistance at point ' i ' of the measured LIV is calculated based on formula,

$$
R_{d i f f}=\frac{V_{i}-V_{i-1}}{I_{i}-I_{i-1}}
$$

where ' V_{i}, ' $\mathrm{V}_{\mathrm{i}-1}$ ' are the measured voltages at set currents ' I_{i} ' and ${ }^{\prime} \mathrm{I}_{\mathrm{i}-1}$ ' respectively.

