Our new all-fiber THz spectrometer for fast data acquisition is based on the novel OSCAT (Optical Sampling by CAVity Tuning) technique. It enables THz time-domain spectroscopy without any moving parts. Combined with our TERA Image extension, the system provides a solution for fast THz imaging applications. Similar to the ASOPS technique, the OSCAT offers great flexibility in system configuration and capability of high-speed measurements. TERA OSCAT is a robust and portable solution for both laboratory use and OEM integration, suitable even for harsh industrial environment.

TERA OSCAT

All-Fiber THz Spectrometer
For Rapid Scan Applications

KEY SPECIFICATIONS
- Rapid Sampling Rate: >200 waveforms / s
- Total Scan Range: up to 4 ns (pulse-to-pulse, virtually unlimited)
- Scan Mode: Rapid / Step Scan

APPLICATIONS
- THz Imaging
- THz Spectroscopy
- Quality Inspection
- THz Remote Sensing

FEATURES
- Designed for High-Speed Measurements
- Robust and Portable
- Compact Fiber Coupled Configuration
- High Flexibility of System Configuration

OPTIONS
- TERA Image
 Automated XY translation stage for THz imaging
- Reflection Guide
 For quick manual adjustment of transmission or reflection geometry

SYSTEM LAYOUT

![System Layout Diagram]

PRINCIPLE OF OPERATION

In the OSCAT technique there is no need for an external moveable delay line. Contrary to the conventional THz-TDS systems, the lengths of the emitter and detector arms are not balanced. The temporal shift $\Delta \tau$ between the pulses i (emitter arm) and $i+a$ (detector arm) is determined by the repetition rate f_{rep} of the fs laser.

$$\Delta \tau = \frac{1}{f_{\text{rep}}} - \frac{1}{f_{\text{rep}} + \Delta f}$$

TERA OSCAT
All-Fiber THz Spectrometer

THZ SPECIFICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>THz Antenna Model</td>
<td>TERA15-FC*</td>
</tr>
<tr>
<td>Scanning Mode</td>
<td>step and rapid</td>
</tr>
<tr>
<td>Spectral range</td>
<td>>3 THz in step mode, >1 THz in rapid mode</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>>60 dB in step mode, >35 dB in rapid mode</td>
</tr>
<tr>
<td>Rapid Scan Range</td>
<td>up to 40 ps</td>
</tr>
<tr>
<td>Total Scan Range</td>
<td>up to 4 ns (pulse-to-pulse, virtually unlimited)</td>
</tr>
<tr>
<td>Rapid Sampling Rate</td>
<td>>200 waveforms/s</td>
</tr>
<tr>
<td>Laser Output Ports for THz</td>
<td>Two fiber coupled ports, 1560 nm, FC/APC, PM fiber, 2.5 m and OSCAT delay fiber</td>
</tr>
<tr>
<td>Laser System Repetition Rate</td>
<td>250 MHz, modulation for OSCAT scanning</td>
</tr>
</tbody>
</table>

*See product data sheet for technical specifications

SYSTEM DIMENSIONS AND WEIGHT

<table>
<thead>
<tr>
<th>System</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optomechanical Setup</td>
<td>540 x 450 x 200 mm³, 34 kg</td>
</tr>
<tr>
<td>OSCAT Control Electronics</td>
<td>please ask</td>
</tr>
</tbody>
</table>

SYSTEM COMPONENTS

- **Optical Breadboard**: Femtosecond laser source with OSCAT delay fiber, Fiber coupled THz emitter and receiver modules, THz TPX polymer lenses
- **Control Electronics**: laser control electronics, OSCAT electronics based on our SYNCRO platform for laser repetition rate control, PC and software package for measurement and data analysis

PHOTOGRAPHY

PA6 plate with laminar interspace

Data acquisition time: 1/60 s

THz IMAGING RESULTS

laminar interspace and air bubbles or shrinkholes are clearly visible

Data acquisition time: approx. 5 hr

with TERA K15

Data acquisition time: approx. 15 min

with TERA OSCAT

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Product Code</th>
<th>TERA OSCAT</th>
</tr>
</thead>
</table>

Please call for pricing. Specifications are subject to change without notice. Custom modifications are available, please inquire.