Prototype Optics in One Week

request a quote

Why design with freeforms?
Designing with freeforms will make your project have:

- Fewer elements
- Lighter weight
- Increased flexibility

And in the end overall better performance.

Freeforms

Customers trust Optimax to create high-quality optics and deliver them fast, and our freeforms are no exception. Designing with freeforms requires fewer elements, lighter weight and increased flexibility for your system.

Freeform optical shapes or optical surfaces are gaining popularity with lens designers and optical system integrators. Now, there are optical fabrication processes that include generation, high-speed VIBE polishing, sub-aperture figure correction, surface smoothing and testing of freeform surfaces.

Optimax produces freeform optics from glass, fused silica, crystals and ceramics for UV, Visible and IR applications using proprietary techniques for low scatter surfaces.

About Freeform Lens Manufacturing
Freeforms are optical shapes or optical surfaces that are designed with little to no symmetry. Manufacturing a freeform is similar to that of a highly complex asphere; surface form and local slope change are all factors that influence the complexity of the shape and the manufacturing process used.

To learn more about freeforms we invite you to visit our Resource Library and read our Technical Papers on the topic.

Specifying Freeforms

Specifying a freeform begins by defining the surface. An optical fabricator needs a clear description of the desired final optic; equation, cloud of points or a 3D model.

<table>
<thead>
<tr>
<th>Type of Asphere</th>
<th>Pros/Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>Easy to manufacture</td>
</tr>
<tr>
<td></td>
<td>Hard to measure</td>
</tr>
<tr>
<td>Concave</td>
<td>Hard to manufacture</td>
</tr>
<tr>
<td></td>
<td>Easy to measure</td>
</tr>
<tr>
<td>Gullwing</td>
<td>Hard to manufacture</td>
</tr>
<tr>
<td></td>
<td>Hard to measure</td>
</tr>
<tr>
<td></td>
<td>Does more optically</td>
</tr>
<tr>
<td>Freeform</td>
<td>Harder to manufacture</td>
</tr>
<tr>
<td></td>
<td>Harder to measure</td>
</tr>
<tr>
<td></td>
<td>Little to no symmetry</td>
</tr>
</tbody>
</table>

Manufacturing Limits for Freeform Surfaces

Optimax utilizes deterministic CNC machine tools for predictable removal rates and adherence to tight tolerances. To control centration, precision tools maintain the optical axis.

FREEFORM

COATING

ASPHERE

CYLINDER

General Comments on Manufacturing Limits

This represents a general list of soft limits and is intended for reference only. As requirements move closer to a min or max shown fabrication becomes more difficult. Certain combinations are unattainable, e.g. 3mm convex radius with 100mm length. Certain configurations add significant fixturing costs, e.g. crossed axis cylinders, cylinders/spheres. Interferometric testing of cylinders is somewhat case specific. Aperture coverage is often limited by the range of diffractive nulls available. Length is always the dimension along the plano axis and width is the dimension across the power axis.
Manufacturing Limits for Cylindrical Surfaces Based on Manufacturing Method

<table>
<thead>
<tr>
<th>Rod or Arbor Attribute</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>3</td>
<td>500¹</td>
</tr>
<tr>
<td>Width (mm) Radius dependent</td>
<td>2 < 2x Radius</td>
<td></td>
</tr>
<tr>
<td>Cylinder Radius (mm) – Convex Only</td>
<td>2</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X-Y Attribute</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Width (mm)</td>
<td>2</td>
<td>300</td>
</tr>
<tr>
<td>Cylinder Radius (mm)</td>
<td>10</td>
<td>∞</td>
</tr>
<tr>
<td>Concave sag to flat (mm)</td>
<td>0.100²</td>
<td>=Radius</td>
</tr>
</tbody>
</table>

¹This is at minimum radius and width. The part-specific minimum will grow in proportion to radius.

²Flat surfaces lead to scratching problems and polisher contact issues. For both practical and economic reasons consider plano here.

PRISM

SPHERE

Here are manufacturing limits and tolerances specific to optical aspheres, prisms, cylinders and spheres. For more detailed information on any attribute, please contact sales@optimaxsi.com.

Common Types of Freeforms

To see more Common Freeforms use the navigate arrows

Testing Freeforms

Optimax inspects 100% of all optics. Test data is provided with prototype orders.

Our metrology must match the sophistication of our manufacturing technology. Optimax offers state-of-the-art metrology, including surface profilers and interferometers to verify that parts meet the form error specification. Testing options are form specific, lenses with mild departure from a best-fit sphere have the highest potential for fractional wave precision.

Fast Delivery

Optimax manufactures a wide variety of optical components. When on-time delivery is crucial, Optimax offers an expedited delivery option with a money back guarantee.
Continued Innovation

Optimax’s R&D department is continuously looking for ways to improve our fabrication process and produce higher quality optics. Our current research projects are designed to meet future market needs.

For more information please see Optimax Innovation or contact sales@optimaxsi.com.

Technical Resources

TECHNICAL PAPERS & NOTES

Integrating Optical, Mechanical and Test Software (with applications to freeform optics)

Optical systems must perform under environmental conditions including thermal and mechanical loading. To predict the performance in the field, integrated analysis combining optical and mechanical software is required. Freeform and conformal optics offer many new opportunities for optical design.

Read More

Advances in Freeform Optics Fabrication for Conformal Window and Dome Applications

Freeform optical shapes or optical surfaces that are designed with non-symmetric features are gaining popularity with lens designers and optical system integrators. This enabling technology allows for conformal sensor windows and domes that provide enhanced aerodynamic properties as well as environmental and ballistic protection. In order to provide ballistic and environmental protection, these conformal windows and domes are typically fabricated from hard ceramic materials.

Read More

Conformal window manufacturing process development and demonstrations for polycrystalline materials

Conformal windows pose new and unique challenges to manufacturing due to the shape, measurement of, and requested hard polycrystalline materials. Their non-rotationally symmetric shape and high departure surfaces do not lend themselves to traditional optical fabrication processes.

Read More

Metrology for the Manufacturing of Freeform Optics

Freeform optical surfaces are gaining popularity with lens designers and optical system integrators as a method to solve complex optical system design problems. Fortunately advances in optical manufacturing have opened the possibility for designers to realize these complex surfaces.

Read More
Freeform Optical manufacturing and testing processes for IR Conformal Window and Domes

Freeform optical shapes or optical surfaces that are designed with non-symmetric features are gaining popularity with lens designers and optical system integrators. This enabling technology allows for conformal sensor windows and domes that provide enhanced aerodynamic properties as well as environmental and ballistic protection. In order to provide ballistic and environmental protection, these conformal windows and domes are typically fabricated from hard ceramic materials which challenge the optical fabricator.

Read More

Manufacturing and Metrology for IR Conformal Windows and Domes

Freeform and conformal optics have the potential to dramatically improve optical systems by enabling systems with fewer optical components, reduced aberrations, and improved aerodynamic performance. These optical components differ from standard components in their surface shape, typically a non-symmetric equation based definition, and material properties. Traditional grinding and polishing tools are unable to handle these freeform shapes.

Read More

Fabricating freeform multispectral-ZnS corrector lenses

For over 100 years, optical imaging systems were limited to rotationally symmetric lens elements, due to limitations in processing optics. However, the present rapid development and application of CNC machines has made fabrication of non-rotationally symmetric lenses, such as freeform surfaces, economical. The benefit of using freeform surfaces is that the lens designer has more flexibility to create innovative 3D imaging packages, while correcting for aberrations.

Read More

Incorporating VIBE into precision optics manufacturing process

The VIBE™ process is a full-aperture, conformal polishing process incorporating high frequency and random motion designed to rapidly remove sub-surface damage in a VIBE pre-polish step and eliminate mid-spatial frequency (MSF) errors in a VIBE finishing step. The VIBE process has potential to be introduced in two areas of today’s modern optics manufacturing process.

Read More
Optimax Capabilities

Contact Us
Optimax Systems, Inc
6367 Dean Parkway
Ontario, NY 14519
sales 585-265-1066
main line 585-265-1020
fax 585-265-1033
sales@optimaxsi.com

Capabilities
- Freeforms
- Aspheres
- Spheres
- Cylinders
- Optical Domes
- Prisms
- Optics for High Power
- Optical Coatings
- Metrology
- Tolerance Chart

Technical Expertise
- Resources
- Technical Papers
- Videos
- Webinars
- Tools & Charts

Careers
Site map
Privacy Policy
Contact/Visit Us

Copyright © 2008 - 2017
All rights reserved

https://www.optimaxsi.com/capabilities/freeform-optics/#1515785338272-80668816-e9e35573-b5ff