Lms19LED series

Device parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating/ storage temperature</td>
<td>T_{stg}</td>
<td>-60..+90*</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature (can be applied for not more than 5 secs)</td>
<td>T_{sul}</td>
<td>+180</td>
<td>°C</td>
</tr>
</tbody>
</table>

*Temperature range may vary for different packaging types.

All parameters refer to LEDs in TO18 package with a cavity and operation at ambient temperature 25°C unless otherwise stated.

LED parameters

<table>
<thead>
<tr>
<th>LED parameters</th>
<th>Conditions</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak emission wavelength1</td>
<td>qCW mode3 $I = 150$ mA</td>
<td>λ_p</td>
<td>1.90 - 1.99</td>
<td>µm</td>
</tr>
<tr>
<td>FWHM of the emission band1</td>
<td>qCW mode3 $I = 150$ mA</td>
<td>FWHM</td>
<td>100 - 200</td>
<td>nm</td>
</tr>
<tr>
<td>Average optical power (minimal/typical)1</td>
<td>qCW mode3 $I = 200$ mA</td>
<td>P_{qCW}</td>
<td>min 0.8 / typ 1</td>
<td>mW</td>
</tr>
<tr>
<td>Peak optical power (minimal/typical)2</td>
<td>Pulse mode4 $I = 1$ A</td>
<td>P_{pul}</td>
<td>min 7.5 / typ 9</td>
<td>mW</td>
</tr>
<tr>
<td>Maximum operating current</td>
<td>qCW mode3</td>
<td>I_{qCW}</td>
<td>250</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Pulse mode4</td>
<td>I_{pul}</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Forward voltage3</td>
<td>qCW mode3 $I = 200$ mA</td>
<td>V</td>
<td>0.5 - 2.5</td>
<td>V</td>
</tr>
</tbody>
</table>

1. Parameter tested for each device.
2. Parameter tested for representative sampling.
3. qCW mode: repetition rate: 0.5 KHz, pulse duration: 1 ms, duty cycle: 50%.
4. Pulse mode: repetition rate: 0.5 KHz, pulse duration: 20 µs, duty cycle: 1%.

Typical spectra (qCW3)

![Typical spectra (qCW3)](image)

Spectra at different temperatures (qCW3, 150 mA)

![Spectra at different temperatures (qCW3, 150 mA)](image)

Typical optical power characteristic (qCW3)

![Typical optical power characteristic (qCW3)](image)

Typical current-voltage characteristic (qCW3)

![Typical current-voltage characteristic (qCW3)](image)
Near-Infrared (NIR) Light-Emitting Diode

<table>
<thead>
<tr>
<th>Packages</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-18 with a cap with a glass window</td>
<td>Lms19LED</td>
</tr>
<tr>
<td>TO-18 with a parabolic reflector without a glass window</td>
<td>Lms19LED-R</td>
</tr>
<tr>
<td>TO-18 with a parabolic reflector with a glass window</td>
<td>Lms19LED-RW</td>
</tr>
<tr>
<td>TO-5 with a built-in thermocooler and thermoresistor, covered by a cap with a glass window</td>
<td>Lms19LED-TEM</td>
</tr>
<tr>
<td>TO-5 with a built-in thermocooler and thermoresistor, covered by a parabolic reflector with a glass window</td>
<td>Lms19LED-TEM-R</td>
</tr>
</tbody>
</table>

Radiant characteristics (far-field pattern)

TO-18 package with a cap

TO-18 package with a parabolic reflector

Related products:

- **Photodiodes Lms24PD, Lms25PD series** - detectors of mid-infrared radiation;
- **LED drivers (D-41i, D-51i, minidrivers mD-1c, mD-1p)** - provide LED power supply in pulse modes.
To drive the LED we recommend the following basic circuit connections:

LED basic circuit connection

![Diagram of LED basic circuit connection]

Quasi Continuous Wave (qCW) mode

- Drive current: \(f = 0.5 \text{ - } 16 \text{ kHz} \)
- Time: \(31 \text{-}1000 \mu s \) and \(31 \text{-}1000 \mu s \)
- max. 0.25 A

Pulse mode

- Drive current: \(f = 0.5 \text{ - } 16 \text{ kHz} \)
- Time: \(2 \text{-}20 \mu s \) and \(62 \text{-}2000 \mu s \)
- max. 2 A

IMPORTANT CAUTIONS:

- Please check your connection circuit before turning on the LED;
- Please mind the LED polarity: anode is marked with a RED dot; REVERSE voltage applying is FORBIDDEN;
- Please do not connect the LED to the multimeter;
- Please control the CURRENT applied to the LED in order NOT to EXCEED the maximum allowable values.

REV.011216 The design and specification of the product can be changed by LED Microsensor NT LLC. without notice

HEAD OFFICE LED Microsensor NT, LLC and RnD CENTRE Microsensor Technology, LLC
10, A, Kurchatova str., 1N, St-Petersburg, 194223, Russia; info@lmsnt.com; www.lmsnt.com
Near-Infrared (NIR) Light-Emitting Diode

1.90 - 1.99 μm

Technical Drawings

Lms19LED

1 - LED cathode
2 - LED anode

TOP VIEW

BOTTOM VIEW
Near-Infrared (NIR) Light-Emitting Diode

Technical Drawings

Lms19LED-TEM

1 - TEC +
2 - LED anode
3 - LED cathode
4 - thermistor
5 - thermistor
6 - TEC -
Near-Infrared (NIR) Light-Emitting Diode

1.80 - 1.89 μm

Technical Drawings

Lms19LED-TEM-R

TOP VIEW

BOTTOM VIEW

1 - TEC +
2 - LED anode
3 - LED cathode
4 - thermistor
5 - thermistor
6 - TEC -

LED chip on Si substrate

6 pins Ø0.45

HEAD OFFICE LED Microsensor NT, LLC and RnD CENTRE Microsensor Technology, LLC
10, A, Kurchatova str., 1N, St-Petersburg, 194223, Russia; info@lmsnt.com; www.lmsnt.com