CLE135, CLE130E, CLE130W
940nm High Efficiency GaAs/AlGaAs IREDs

UPGRADED SERIES

July, 2005

CLE135

CLE130E

CLE130W

ALL DIMENSIONS ARE IN INCHES (MILLIMETERS)

Clairex reserves the right to make changes at any time to improve design and to provide the best possible product.
CLE135, CLE130E, CLE130W
940nm High Efficiency GaAs/AlGaAs IREDs

features
- higher power output
- cathode connected to case
- TO-46 header with three lens options
- different package styles provide flexible design options

description
The original Clairex CLE130 series has been upgraded. The new series features current state of the art GaAs/AlGaAs technology for increased quantum efficiency. The chip substrate is N type material resulting in the case being common to the cathode. The original configuration can still be supplied as a special order. Three different lens options are offered. Contact Clairex for other electrical and package options.

absolute maximum ratings (T_A = 25°C unless otherwise stated)

- **storage temperature**
 - CLE135 and CLE130W: -65°C to +150°C
 - CLE130E: -40°C to +150°C

- **operating temperature**
 - CLE135 and CLE130W: -65°C to +125°C
 - CLE130E: -40°C to +100°C

- **lead soldering temperature** (1)
 - 260°C

- **continuous forward current** (2)
 - 100mA

- **peak forward current** (1.0ms pulse width, 10% duty cycle)
 - 1A

- **reverse voltage**
 - 5V

- **continuous power dissipation** (3)
 - 200mW

notes:
1. 0.06" (1.5mm) from the header for 5 seconds maximum.
2. Derate linearly 0.80mA/°C from 25°C free air temperature to T_A = +125°C.
3. Derate linearly 1.60mW/°C from 25°C free air temperature to T_A = +125°C.

electrical characteristics (T_A = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>symbol</th>
<th>parameter</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>units</th>
<th>test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Forward voltage</td>
<td>-</td>
<td>1.5</td>
<td>1.8</td>
<td>V</td>
<td>I_F = 100mA</td>
</tr>
<tr>
<td>I_R</td>
<td>Reverse current</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>µA</td>
<td>V_R = 3V</td>
</tr>
<tr>
<td>λ_p</td>
<td>Peak wavelength</td>
<td>-</td>
<td>940</td>
<td>-</td>
<td>nm</td>
<td>I_F = 100mA</td>
</tr>
<tr>
<td>BW</td>
<td>Spectral bandwidth</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>nm</td>
<td>I_F = 20mA</td>
</tr>
<tr>
<td>t_r, t_f</td>
<td>Output rise and fall time</td>
<td>-</td>
<td>700</td>
<td>-</td>
<td>ns</td>
<td>I_F = 100mA</td>
</tr>
<tr>
<td>P_o</td>
<td>Total output power</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>mW</td>
<td>I_F = 100mA</td>
</tr>
<tr>
<td>P_o</td>
<td>Total output power</td>
<td>2.0</td>
<td>2.5</td>
<td>-</td>
<td>mW</td>
<td>I_F = 20mA</td>
</tr>
<tr>
<td>θ HP</td>
<td>Emission angle at half power points</td>
<td>-</td>
<td>80</td>
<td>-</td>
<td>deg.</td>
<td>I_F = 20mA</td>
</tr>
<tr>
<td>P_o</td>
<td>Total output power</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>mW</td>
<td>I_F = 100mA</td>
</tr>
<tr>
<td>P_o</td>
<td>Total output power</td>
<td>1.5</td>
<td>2.0</td>
<td>-</td>
<td>mW</td>
<td>I_F = 20mA</td>
</tr>
<tr>
<td>θ HP</td>
<td>Emission angle at half power points</td>
<td>-</td>
<td>70</td>
<td>-</td>
<td>deg.</td>
<td>I_F = 20mA</td>
</tr>
<tr>
<td>P_o</td>
<td>Total output power</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>mW</td>
<td>I_F = 100mA</td>
</tr>
<tr>
<td>E_o</td>
<td>Irradiance (4)</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>mW/cm²</td>
<td>I_F = 100mA</td>
</tr>
<tr>
<td>E_o</td>
<td>Irradiance (4)</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
<td>mW/cm²</td>
<td>I_F = 20mA</td>
</tr>
<tr>
<td>θ HP</td>
<td>Emission angle at half power points</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>deg.</td>
<td>I_F = 20mA</td>
</tr>
</tbody>
</table>

note:
4. E_o is a measure of irradiance (power/unit area) within a 0.444" (1.128cm) diameter area, centered on the mechanical axis of the device and spaced 2.54" (6.45cm) from the lens side of the tab. This is geometrically equivalent to a 10° cone.

Clairex reserves the right to make changes at any time to improve design and to provide the best possible product.